题目内容

14.如图,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

分析 过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).
再设DE=x,在Rt△AED中利用勾股定理可求出DE.

解答 解:
过C作CG⊥AD于G,
在直角梯形ABCD中∵AD∥BC,∠A=∠B=90°,∠CGA=90°,AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=12,
∵∠DCE=45°,由①②可得ED=BE+DG,
设DE=x,则DG=x-4,
∴AD=16-x
在Rt△AED中,∵DE2=AD2+AE2
∴x2=(16-x)2+82
∴x=10,
即DE=10.

点评 本题考查的是全等三角形的判定和性质、勾股定理的应用,掌握三角形全等的判定定理和性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网