题目内容

20.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.
证明:∵BC∥DE(已知),
∴∠4=∠FCB(两直线平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠FCB(等量代换).
∵∠1=∠2(已知),
∴∠1+∠FCE=∠2+∠FCE(等式的性质).
即∠FCB=∠ECB,
∴∠3=∠ECD(等量代换).
∴AE∥CD(内错角相等,两直线平行).

分析 先用平行线得到∠4=∠FCB,再用等式性质,最后用平行线的判定即可.

解答 证明:∵BC∥DE(已知),
∴∠4=∠FCB(两直线平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠FCB(等量代换).
∵∠1=∠2(已知),
∴∠1+∠FCE=∠2+∠FCE(等式的性质).
即∠FCB=∠ECD,
∴∠3=∠ECD(等量代换).
∴AE∥CD(内错角相等,两直线平行).
故答案为:∠FCB,两直线平行,同位角相等,∠FCB,等量代换,等式的性质,∠ECD,等量代换,内错角相等,两直线平行.

点评 此题是平行线的性质是判定,还用到等式的性质,解本题关键是熟练运用平行线的性质和判定.一道中考常考题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网