题目内容

3.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度数;
(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.

分析 (1)根据对顶角相等求出∠BAOC的度数,设∠AOE=2x,根据题意列出方程,解方程即可;
(2)根据角平分线的定义求出∠BOF的度数即可.

解答 解:(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x,
∵∠AOC=∠BOD=75°,
∴5x=75°,
解得:x=15°,
则2x=30°,
∴∠AOE=30°;
(2)OB是∠DOF的平分线;理由如下:
∵∠AOE=30°,
∴∠BOE=180°-∠AOE=150°,
∵OF平分∠BOE,
∴∠BOF=75°,
∵∠BOD=75°,
∴∠BOD=∠BOF,
∴OB是∠COF的角平分线.

点评 本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网