题目内容
如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为 .
![]()
![]()
3![]()
.
【考点】矩形的性质;菱形的性质.
【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.
【解答】解:∵四边形ABCD是矩形,四边形BEDF是菱形,
∴∠A=90°,AD=BC,DE=BF,OE=OF,EF⊥BD,∠EBO=FBO,
∴AE=FC.又EF=AE+FC,
∴EF=2AE=2CF,又EF=2OE=2OF,AE=OE,
∴△ABE≌OBE,
∴∠ABE=∠OBE,
∴∠ABE=∠EBD=∠DBC=30°,
∴BE=![]()
,
∴BF=BE=2![]()
,
∴CF=AE=![]()
,
∴BC=BF+CF=3![]()
,
故答案为:3![]()
.
【点评】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°.
练习册系列答案
相关题目