题目内容
2.计算题(1)$3\sqrt{3}-\sqrt{8}+\sqrt{2}-\sqrt{27}$
(2)$2\sqrt{12}×\frac{\sqrt{3}}{4}÷5\sqrt{2}$.
分析 (1)先把各个二次根式进行化简,再合并同类二次根式即可;
(2)根据二次根式的乘除混合运算法则计算.
解答 解:(1)$3\sqrt{3}-\sqrt{8}+\sqrt{2}-\sqrt{27}$=3$\sqrt{3}$-2$\sqrt{2}$+$\sqrt{2}$-3$\sqrt{3}$=-$\sqrt{2}$;
(2)$2\sqrt{12}×\frac{\sqrt{3}}{4}÷5\sqrt{2}$=4$\sqrt{3}$×$\frac{\sqrt{3}}{4}$×$\frac{\sqrt{2}}{10}$=$\frac{3\sqrt{2}}{10}$.
点评 本题考查的是二次根式的混合运算,掌握二次根式乘法、除法及加减法运算法则是解题的关键.
练习册系列答案
相关题目
15.已知抛物线y=2x2-8x+6与x轴相交于点A、B(点A在点B的左边),与y轴交于点C,BC的中点为M,点B关于y轴的对称点为N,则MN的长度等于( )
| A. | $\frac{3\sqrt{13}}{2}$ | B. | $\frac{\sqrt{119}}{2}$ | C. | $\frac{\sqrt{110}}{2}$ | D. | 6 |
13.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是( )
| A. | (b-2,-a) | B. | (b+2,-a) | C. | (-a+2,-b) | D. | (-a-2,-b) |
7.
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,DC与AB的延长线交于点C,∠A=30°,给出下面3个结论:∠BDC=∠A;AB=2BC;AD2=3BC2;其中正确结论的个数是( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
11.方程组$\left\{\begin{array}{l}{x+3y=5}\\{2x-3y=1}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$ |