题目内容

11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB与E,交AC于F,过点O作OD⊥AC于D,下列四个结论:其中正确的结论是(  )
①EF=BE+CF;
②∠BOC=90°+$\frac{1}{2}$∠A;
③设OD=m,AE+AF=n,则S△AEF=mn.
④EF不能成为△ABC的中位线.
A.1个B.2个C.3个D.4个

分析 由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+$\frac{1}{2}$∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=$\frac{1}{2}$mn,故③错误;E、F不可能是三角形ABC的中点,则EF不能为中位线故④正确.

解答 解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-$\frac{1}{2}$∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+$\frac{1}{2}$∠A;故②正确;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=∠OBE,∠OCB=∠OCF,
∵EF∥BC,
∴∠OBC=∠EOB,∠OCB=∠FOC,
∴∠EOB=∠OBE,∠FOC=∠OCF,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF,
故①正确;
过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,

∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=$\frac{1}{2}$AE•OM+$\frac{1}{2}$AF•OD=$\frac{1}{2}$OD•(AE+AF)=$\frac{1}{2}$mn;故③错误;
∵E、F不可能是三角形ABC的中点,∴EF不可能是△ABC的中位线.
所以④正确.
综上可知其中正确的结论是①②④,
故选C.

点评 此题考查了三角形中位线定理的运用,以及平行线的性质、等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网