题目内容

1.如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F.求PE+PF的值.

分析 首先连接OP.由矩形ABCD的两边AB=3,BC=4,可求得OA=OD=$\frac{5}{2}$,S△AOD=$\frac{1}{4}$S矩形ABCD=3,然后由S△AOD=S△AOP+S△DOP=$\frac{1}{2}$OA•PE+$\frac{1}{2}$OD•PF=$\frac{1}{2}$OA(PE+PF)=$\frac{1}{2}$×$\frac{5}{2}$×(PE+PF)=3,求得答案.

解答 解:连接OP,如图所示:
∵矩形ABCD的两边AB=3,BC=4,
∴S矩形ABCD=AB•BC=12,OA=OC,OB=OD,AC=BD,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5,
∴S△AOD=$\frac{1}{4}$S矩形ABCD=3,OA=OD=$\frac{5}{2}$,
∴S△AOD=S△AOP+S△DOP=$\frac{1}{2}$OA•PE+$\frac{1}{2}$OD•PF=$\frac{1}{2}$OA(PE+PF)=$\frac{1}{2}$×$\frac{5}{2}$×(PE+PF)=3,
∴PE+PF=$\frac{12}{5}$.

点评 此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网