题目内容

12.如图,⊙O的直径AB长为12,弦CD∥AB,且图中阴影部分的面积为9π,则∠CAD=45°.

分析 连接OC,OD,设∠CAD=α,则∠COD=2α,判断出阴影部分的面积=扇形OCD的面积,根据扇形的面积公式即可求解.

解答 解:连接OC,OD,设∠CAD=α,
∴∠COD=2α,
∵AB∥CD,
∴△ACD的面积=△COD的面积,
∴阴影部分的面积=弓形CD的面积+△COD的面积=扇形OCD的面积=$\frac{2απ×{6}^{2}}{360}$=9π,
解得α=45°.
故答案为:45°

点评 本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网