题目内容
6.已知二次函数y=ax2+bx+c,当x=-2时,y=0;当x=1时,y=0;则当x=2时,y=8,求这个二次函数的表达式.分析 把已知条件中的三组对应值分别代入y=ax2+bx+c中得到关于a、b、c的方程组,然后解方程组求出a、b、c即可得到抛物线解析式.
解答 解:根据题意得$\left\{\begin{array}{l}{4a-2b+c=0}\\{a+b+c=0}\\{4a+2b+c=8}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=2}\\{b=2}\\{c=-4}\end{array}\right.$.
所以抛物线解析式为y=2x2+2x-4.
点评 本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
练习册系列答案
相关题目