题目内容

下列图形中不是轴对称而是中心对称图形的是(    )

A. 等边三角形

B. 平行四边形

C. 矩形

D. 菱形

B 【解析】试题解析:等边三角形不是中心对称图形,对称轴为三条中线所在直线;平行四边形的对称中心为两条对角线的交点,不是轴对称图形;矩形的对称中心为两条对角线的交点,对称轴为两对边中点连线所在直线;菱形的对称中心为两条对角线的交点,对称轴为两条对角线所在直线;所以选择B.
练习册系列答案
相关题目

从一副扑克牌中任取一张,则抽到红桃的频率与抽到黑桃的频率哪个大?抽到梅花与抽到大、小王的频率哪个大?

抽到红桃的可能性与抽到黑桃的频率一样大,而抽到梅花的频率大于抽到大、小王的频率. 【解析】试题分析: 本题考察可能性大小的应用,关键是根据各色扑克的张数求出各色扑克被抽到的频率是多少. 【解析】 一副扑克牌有54张,其中红桃、黑桃、梅花、方块各13张,大、小王各一张,所以,抽到红桃的的频率为,抽到黑桃的的频率为,抽到梅花的的频率为,抽到大、小王的的频率为. 所以抽到红桃的可能性与抽到...

在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于_____.

6种 【解析】试题分析:当△ABC是锐角三角形时,则∠B=70°,当△ABC是钝角三角形时,则∠B=20°.

关于中心对称的两个图形,对称点的连线经过__________

对称中心 【解析】关于中心对称的两个图形,对称点的连线经过对称中心. 故答案:对称中心.

△ABC和△AˊBˊCˊ关于点O对称,下列结论不正确的是( )

A. AO=AˊO

B. AB∥AˊBˊ

C. CO=BO

D. ∠BAC=∠BˊAˊCˊ

C 【解析】因为只有对称点到对称中心的距离相等,所以C选项是错误的 故选C.

分解因式:

(1) (2)

(3) (4)

(5) (6)

(7) 8)

(9) (10)

(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9) ;(10) . 【解析】试题分析:(1)首先提取负号,再利用完全平方公式进行分解; (2)首先提取公因式-y,再利用完全平方公式进行分解; ...

已知=0,则a+b=__________.

1 【解析】∵a2+4a+4+|b-3|=0,∴(a+2)2+|b-3|=0,∴a+2=0,b-3=0,∴a=-2,b=3,∴a+b=1, 故答案为:1.

已知点A(﹣1,﹣2),点B(1,4)

(1)试建立相应的平面直角坐标系;

(2)描出线段AB的中点C,并写出其坐标;

(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.

(1)见解析;(2)C(0,1);(3)平移规律是(x+3,y),所以A1(2,﹣2),B1(4,4),C1(3,1). 【解析】试题分析:画出平面直角坐标系后描出线段AB的中点C,根据平移的规律求出线段A1B1两个端点及线段中点C1的坐标为A1(2,﹣2),B1(4,4),C1(3,1). 试题解析:【解析】 (1)坐标系如图: (2)C(0,1); (3)平移规律是(...

二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为(  )

A. -3 B. 3 C. -6 D. 9

B 【解析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可. 【解析】 ∵抛物线的开口向上,顶点纵坐标为-3, ∴a>0, =-3,即b2=12a, ∵一元二次方程ax2+bx+m=0有实数根, ∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网