题目内容

13.A、B两地相距600千米,一列慢车从A地开出,每小时行驶80千米,一列快车从B地开出,每小时行驶120千米,两车同时开出.
(1)若相向而行,出发后多少小时相遇?
(2)若相背而行,多少小时后,两车相距800千米
(3)若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?

分析 (1)设出发后x小时两车相遇,根据两地间距=相遇时间×两车速度之和,即可列出关于x的一元一次方程,解之即可得出结论;
(2)设y小时后两车相距800千米,根据行驶时间×两车速度和=两车间距-两地间距,即可列出关于y的一元一次方程,解之即可得出结论;
(3)设出发后z小时快车追上慢车,根据两地间距=相遇时间×两车速度之差,即可列出关于z的一元一次方程,解之即可得出结论.

解答 解:(1)设出发后x小时相遇,
根据题意,可得(80+120)x=600,
解得x=3.
答:若相向而行,出发后3小时相遇;

(2)设y小时后两车相距800千米,
根据题意,可得(80+120)y=800-600,
解得y=1.
答:若相背而行,1小时后,两车相距800千米;

(3)设z小时后快车追上慢车,
根据题意,可得(120-80)z=600,
解得 z=15.
答:若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.

点评 本题考查了一元一次方程的应用,掌握行程问题中的基本数量关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网