题目内容

12.观察规律:
$\begin{array}{l}\frac{1}{{\sqrt{2}+1}}=\frac{{\sqrt{2}-1}}{{({\sqrt{2}+1})({\sqrt{2}-1})}}=\frac{{\sqrt{2}-1}}{2-1}=\sqrt{2}-1\end{array}\begin{array}{l}$
$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{({\sqrt{3}+\sqrt{2}})({\sqrt{3}-\sqrt{2}})}}=\frac{{\sqrt{3}-\sqrt{2}}}{3-2}=\sqrt{3}-\sqrt{2}\end{array}$
同理可得:$\begin{array}{l}\frac{1}{{\sqrt{4}+\sqrt{3}}}=\sqrt{4}-\sqrt{3}\end{array}$
依照上述规律,则:$\frac{1}{{\sqrt{11}+\sqrt{10}}}$=$\sqrt{11}$-$\sqrt{10}$; $\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$=$\sqrt{n+1}$-$\sqrt{n}$(n≥1的整数);
$({\frac{1}{{\sqrt{2}+1}}+\frac{1}{{\sqrt{3}+\sqrt{2}}}+\frac{1}{{\sqrt{4}+\sqrt{3}}}+…+\frac{1}{{\sqrt{2016}+\sqrt{2015}}}})({\sqrt{2016}+1})$=2015.

分析 仿照上述计算过程将原式变形,化简即可得到结果;原式括号中分母有理化后,利用平方差公式计算即可得到结果.

解答 解:$\frac{1}{\sqrt{11}+\sqrt{10}}$=$\frac{\sqrt{11}-\sqrt{10}}{(\sqrt{11}+\sqrt{10})(\sqrt{11}-\sqrt{10})}$=$\sqrt{11}$-$\sqrt{10}$,$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}$=$\sqrt{n+1}$-$\sqrt{n}$,
原式=($\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{2016}$-$\sqrt{2015}$)($\sqrt{2016}$+1)=($\sqrt{2016}$-1)($\sqrt{2016}$+1)=2016-1=2015,
故答案为:$\sqrt{11}$-$\sqrt{10}$;$\sqrt{n+1}$-$\sqrt{n}$;2015

点评 此题考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网