题目内容
8.解方程组:$\left\{\begin{array}{l}{x-y=2}\\{{x}^{2}-2xy-{y}^{2}=0}\end{array}\right.$.分析 根据解方程组的方法可以解答此方程.
解答 解:由$\left\{\begin{array}{l}{x-y=2}\\{{x}^{2}-2xy-{y}^{2}=0}\end{array}\right.$得
$\left\{\begin{array}{l}{x-y=2}&{①}\\{(x-y)^{2}-2{y}^{2}=0}&{②}\end{array}\right.$
将①代入②,得
4-2y2=0
解得,y=$±\sqrt{2}$,
将y=$\sqrt{2}$代入①,得
x=2+$\sqrt{2}$,
将x=-$\sqrt{2}$代入②,得
x=2-$\sqrt{2}$,
故原方程组的解是$\left\{\begin{array}{l}{x=2+\sqrt{2}}\\{y=\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2-\sqrt{2}}\\{y=-\sqrt{2}}\end{array}\right.$.
点评 本题考查解高次方程,解题的关键是明确解方程组的方法.
练习册系列答案
相关题目