ÌâÄ¿ÄÚÈÝ
14£®Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬µãA£¬C·Ö±ðÔÚxÖáÉÏ£¬yÖáÉÏ£¬µãB×ø±êΪ£¨4£¬2£©£¬DΪBCÉÏÒ»¶¯µã£¬°Ñ¡÷OCDÑØOD¶ÔÕÛ£¬µãCÂäÔÚµãP´¦£¬ÐγÉÈçͼËÄÖÖÇéÐΣ®£¨1£©Èçͼ¶¡£¬µ±µãDÔ˶¯µ½ÓëµãBÖØºÏʱ£¬ÇóµãPµÄ×ø±ê£»
£¨2£©ÏÖÓÐÖ±Ïßy=kx+2$\sqrt{2}$£¬¹Û²ìµãD´ÓµãCÏòµãBÔ˶¯¹ý³ÌÖУ¬µãPËùÐγɵÄÔ˶¯Â·¾¶Í¼ÐΣ¬µ±Ö±Ïßy=kx+2$\sqrt{2}$ÓëµãPËùÐγɵÄÔ˶¯Â·¾¶Í¼ÐÎÓÐ2¸ö¹«¹²µãʱ£¬ÇókµÄȡֵ·¶Î§£¿
·ÖÎö £¨1£©Ê×ÏÈÉèBPÓëxÖáµÄ½»µãΪµãE£¬ÔÙ¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨·½·¨£¬Åжϳö¡÷OPE¡Õ¡÷BAE£»È»ºóÉèOE=x£¬ÔòBE=x£¬AE=4-x£¬Çó³öOE¡¢PEµÄÖµ¸÷ÊǶàÉÙ£»×îºó¸ù¾ÝRT¡÷OPEÖУ¬OE-PF=OP-PE£¬Çó³öPFµÄÖµÊǶàÉÙ£»ÔÙ¸ù¾Ý¡÷OPF¡×¡÷OEP£¬µÃ$\frac{PF}{OF}=\frac{PE}{OP}$£¬Çó³öOFµÄÖµÊǶàÉÙ£¬½ø¶øÇó³öµãPµÄ×ø±ê¼´¿É£®
£¨2£©µãD´ÓµãCÏòµãBÔ˶¯¹ý³ÌÖУ¬µãPËùÐγɵÄÔ˶¯Â·¾¶Í¼ÐÎÊÇÒÔOΪԲÐÄ£¬2Ϊ°ë¾¶µÄ»¡£¬ÆäÖÐP2µã×ø±ê¼´µÚ£¨1£©²½ÖеÄPµã×ø±ê£¬¼´${P}_{2}£¨\frac{8}{5}£¬-\frac{6}{5}£©$£»µãP1¼´Ö±Ïßy=kx+2$\sqrt{2}$Ó뻡ÏàÇеÄÇе㣬Á¬½áOP1£¬¹ýP1×÷P1H¡ÍxÖᣬOK=2$\sqrt{2}$£¬OP1=2£¬Çó³öP1µÄ×ø±ê£¬ÔÙ°ÑP1¡¢P2µÄ×ø±ê·Ö±ð´úÈëy=kx+2$\sqrt{2}$£¬Çó³ök1¡¢k2µÄÖµ£¬ÅжϳökµÄȡֵ·¶Î§¼´¿É£®
½â´ð ½â£º£¨1£©Èçͼ1£¬ÉèBPÓëxÖáµÄ½»µãΪµãE£¬![]()
¡ßOP=BA£¬¡ÏBAE=¡ÏOPE£¬¡ÏBEA=¡ÏOEP£¬
¡à¡÷OPE¡Õ¡÷BAE£®
ÉèOE=x£¬ÔòBE=x£¬AE=4-x£¬
¸ù¾ÝAE2+AB2=BE2£¬
¿ÉµÃ£¨4-x£©2+22=x2£¬
½âµÃx=$\frac{5}{2}$£¬
¡àOE=$\frac{5}{2}$£¬PE2=OE2-OP2£¬¡àPE=$\frac{3}{2}$£®
RT¡÷OPEÖУ¬OE•PF=OP•PE£¬
¼´$\frac{5}{2}¡ÁPF=2¡Á\frac{3}{2}$£¬
¡àPF=2¡Á$\frac{3}{2}¡Â\frac{5}{2}$
=3$¡Â\frac{5}{2}$
=$\frac{6}{5}$£®
¸ù¾Ý¡÷OPF¡×¡÷OEP£¬µÃ$\frac{PF}{OF}=\frac{PE}{OP}$£¬
¼´$\frac{\frac{6}{5}}{OF}=\frac{\frac{3}{2}}{2}$£¬
ËùÒÔOF=$\frac{6}{5}¡Á2¡Â\frac{3}{2}$
=$\frac{12}{5}¡Á\frac{2}{3}$
=$\frac{8}{5}$£¬
¡àP£¨$\frac{8}{5}$£¬$-\frac{6}{5}$£©£®
£¨2£©Èçͼ2£¬µãD´ÓµãCÏòµãBÔ˶¯¹ý³ÌÖУ¬µãPËùÐγɵÄÔ˶¯Â·¾¶Í¼ÐÎÊÇÒÔOΪԲÐÄ£¬2Ϊ°ë¾¶µÄ»¡£¬
£¬
ÆäÖÐP2µã×ø±ê¼´µÚ£¨1£©²½ÖеÄPµã×ø±ê£¬¼´${P}_{2}£¨\frac{8}{5}£¬-\frac{6}{5}£©$£®
µãP1¼´Ö±Ïßy=kx+2$\sqrt{2}$Ó뻡ÏàÇеÄÇе㣬Á¬½áOP1£¬¹ýP1×÷P1H¡ÍxÖᣬOK=2$\sqrt{2}$£¬OP1=2£¬
¡à¡ÏCOP1=45¡ã£¬¡ÏOP1H=45¡ã£¬OH=P1H=$\sqrt{2}$£®
¡à${P}_{1}£¨\sqrt{2}£¬\sqrt{2}£©$£®
°Ñ${P}_{1}£¨\sqrt{2}£¬\sqrt{2}£©$£¬${P}_{2}£¨\frac{8}{5}£¬-\frac{6}{5}£©$·Ö±ð´úÈëy=kx+2$\sqrt{2}$£¬
½âµÃk1=-1£¬${k}_{2}=-\frac{3}{4}-\frac{5\sqrt{2}}{4}$£®
¡à-$\frac{3}{4}$-$\frac{5\sqrt{2}}{4}$¡Ük£¼-1£®
µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁË´ÓÒÑÖªº¯ÊýͼÏóÖлñÈ¡ÐÅÏ¢£¬²¢ÄÜÀûÓûñÈ¡µÄÐÅÏ¢½â´ðÏàÓ¦µÄÎÊÌâµÄÄÜÁ¦£»
£¨2£©´ËÌ⻹¿¼²éÁËÈ«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬ÒÔ¼°µãµÄÔ˶¯¹ì¼£µÄÅжϣ¬ÒªÊìÁ·ÕÆÎÕ£®
| Xxx¾ÓÃñµç·ÑרÓ÷¢Æ± | |
| ¼Æ·ÑÆÚÏÞ£ºÒ»¸öÔ | |
| ÓõçÁ¿£¨¶È£© | µç¼Û£¨Ôª/¶È£© |
| ½×ÌÝÒ»£º190 | 0.53 |
| ½×Ìݶþ£º190-290£¨³¬³ö²¿·Ö£© | 0.58 |
| ±¾ÔÂʵÓýð¶î£º106.5£¨Ôª£© | £¨´óд£©Ò¼°ÛÁã½ԪÎé½Ç |
£¨1£©Èç¹ûÔÂÓõçÁ¿x¶ÈÀ´±íʾ£¬Êµ¸¶½ð¶îÓÃyÔªÀ´±íʾ£¬ÇëÄãд³öʵ¸¶½ð¶îÓÃyÔªÓëÔÂÓõçÁ¿x¶ÈÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÇëÄã¸ù¾Ý±íÖб¾ÔÂʵ¸¶½ð¶î¼ÆËãÕâ¸ö¼ÒÍ¥±¾ÔµÄʵ¼ÊÓõçÁ¿£»
£¨3£©ÈôСǿºÍС»ª¼ÒÒ»¸öÔµÄʵ¼ÊÓõçÁ¿·Ö±ðΪ120¶ÈºÍ250¶È£¬Ôòʵ¸¶½ð¶î·Ö±ðΪ¶àÉÙÔª£¿