题目内容
11.三元一次方程组$\left\{\begin{array}{l}{5x+4y+z=0}\\{3x+y-4z=11}\\{x+y+z=-2}\end{array}\right.$,消去未知数z后,得到的二元一次方程组是( )| A. | $\left\{\begin{array}{l}{4x+3y=2}\\{7x+5y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{4x+3y=2}\\{23x+17y=11}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{3x+4y=2}\\{7x+5y=3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{3x+4y=2}\\{23x+17y=11}\end{array}\right.$ |
分析 根据解三元一次方程组的方法可以解答本题.
解答 解:$\left\{\begin{array}{l}{5x+4y+z=0}&{①}\\{3x+y-4z=11}&{②}\\{x+y+z=-2}&{③}\end{array}\right.$
①-②,得
4x+3y=2④
②+③×4,得
7x+5y=3⑤
由④⑤可知,选项A正确,
故选A.
点评 本题考查解三元一次方程组,解题的关键是明确题意,会用消元法解方程.
练习册系列答案
相关题目
6.要使分式$\frac{1}{(x-1)(x-2)}$有意义,则x的取值应满足( )
| A. | x≠1 | B. | x≠2 | C. | x≠1或x≠2 | D. | x≠1且x≠2 |
3.化简5$\sqrt{\frac{2}{5}}$结果正确的是( )
| A. | $\frac{1}{5}\sqrt{10}$ | B. | 25$\sqrt{10}$ | C. | $\sqrt{2}$ | D. | $\sqrt{10}$ |