题目内容

19.用加减法解二元一次方程组:
(1)$\left\{\begin{array}{l}{4x+5y=-19}\\{3x-2y=3}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+4y=10}\\{4x+y-9=0}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=10}\end{array}\right.$ 
(4)$\left\{\begin{array}{l}{\frac{x+4}{3}-\frac{2y-3}{5}=2}\\{\frac{x+3}{2}+\frac{y+5}{3}=7}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{4x+5y=-19①}\\{3x-2y=3②}\end{array}\right.$,
①×2+②×5得:23x=-23,即x=-1,
把x=-1代入①得:y=-3.
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+4y=10①}\\{4x+y=9②}\end{array}\right.$,
②×4-①得:13x=26,即x=2,
把x=2代入①得:y=1.
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{3x-2y=8①}\\{3x+2y=10②}\end{array}\right.$,
①+②得:6x=18,即x=3,
把x=3代入①得:y=$\frac{1}{2}$.
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{1}{2}}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{5x-6y=1①}\\{3x+2y=23②}\end{array}\right.$,
①+②×3得:14x=70,即x=5,
把x=5代入①得:y=4.
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=4}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网