题目内容
19.用加减法解二元一次方程组:(1)$\left\{\begin{array}{l}{4x+5y=-19}\\{3x-2y=3}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+4y=10}\\{4x+y-9=0}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=10}\end{array}\right.$
(4)$\left\{\begin{array}{l}{\frac{x+4}{3}-\frac{2y-3}{5}=2}\\{\frac{x+3}{2}+\frac{y+5}{3}=7}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{4x+5y=-19①}\\{3x-2y=3②}\end{array}\right.$,
①×2+②×5得:23x=-23,即x=-1,
把x=-1代入①得:y=-3.
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+4y=10①}\\{4x+y=9②}\end{array}\right.$,
②×4-①得:13x=26,即x=2,
把x=2代入①得:y=1.
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{3x-2y=8①}\\{3x+2y=10②}\end{array}\right.$,
①+②得:6x=18,即x=3,
把x=3代入①得:y=$\frac{1}{2}$.
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{1}{2}}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{5x-6y=1①}\\{3x+2y=23②}\end{array}\right.$,
①+②×3得:14x=70,即x=5,
把x=5代入①得:y=4.
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=4}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| 价格/类型 | A型 | B型 |
| 进价(元/只) | 30 | 70 |
| 标价(元/只) | 50 | 100 |
(2)元旦活动期间,超市决定将A型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B型计算器最多打几折出售?
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |