题目内容

18.如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=12.

分析 根据垂直的定义得到∠BDE=∠ADF=90°,根据三角形的内角和得到∠F=∠B,推出△ADF∽△BDE,根据相似三角形的性质得到$\frac{AD}{DE}=\frac{DF}{BD}$,代入数据即可得到结论.

解答 解:∵FD⊥AB,
∴∠BDE=∠ADF=90°,
∵∠ACB=90°,∠CEF=∠BED,
∴∠F=∠B,
∴△ADF∽△BDE,
∴$\frac{AD}{DE}=\frac{DF}{BD}$,
即$\frac{6}{2}=\frac{DF}{10-6}$,
解得:DF=12,
故答案为:12.

点评 本题考查了直角三角形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网