题目内容

2.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是(  )
A.60°B.65°C.70°D.75°

分析 由PA、PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.

解答 解:连接OB,
∵PA、PB是⊙O的切线,A、B为切点,
∴∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠ACB=$\frac{1}{2}$∠AOB=70°,
故选C.

点评 本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,求出∠AOB,再根据圆周角定理来解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网