题目内容

10.如图,已知AO⊥BE于O点,CO⊥DO于O点,∠BOC=α,则∠AOD的度数为(  )
A.α-90°B.2α-90°C.180°-αD.2α-180°

分析 首先根据垂直定义可得∠COD=90°,∠AOB=90°,再根据同角的余角相等可得∠BOD=∠AOC,再有条件∠BOC=α,可表示出∠BOD=∠AOC的度数,进而得到答案.

解答 解:∵AO⊥BE,CO⊥DO,
∴∠COD=90°,∠AOB=90°,
即:∠AOD+∠BOD=∠AOD+∠AOC=90°,
∴∠BOD=∠AOC,
∵∠BOC=α,
∴∠BOD=∠AOC=α-90°,
∴∠AOD=90°-α+90°=180°-α,
故选:C.

点评 此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网