题目内容
5.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一个锐角等于60°.这样的图形有( )| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
分析 图②,首先运用翻折变换的性质、平行线的性质证明∠FBE=∠EBG(设为α),此为解题的关键性结论,再次证明∠ABD=∠FBE=α,求出α=30°,则另一锐角=60°,图④,首先运用翻折变换的性质证明∠MAB=60°,求出∠BAC=60°,即可解决问题.
解答
解:如图②,由题意得:AD∥CF,AC=BC
∴DF=BF,EF为直角△BDE斜边上的中线,
∴EF=BF,∠FBE=∠FEB,
而EF∥BC,
∴∠FEB=∠EBG,∠FBE=∠EBG(设为α),
由题意得:∠ABD=∠FBE=α,而∠ABG=90°,
∴3α=90°,α=30,
∴∠FDE=60°;
如图④,由题意得:AN=AB=2AM,∠AMB=90°,
∴∠ABM=30°,∠MAB=60°;
由题意得:∠NAC=∠BAC=$\frac{180°-60°}{2}$=60°,
综上所述,有一个锐角为60°的直角三角形有两个,
故选C.
点评 本题主要考查了翻折变换-折叠问题,直角三角形的性质,等边三角形的判定等知识的综合应用能力及推理能力,难度较大,注意细心、耐心思考.
练习册系列答案
相关题目
14.去年我市有56940名初中毕业生参加升学考试,为了了解这56940名考生的数学成绩.从中抽取2000名考生的数学成绩进行统计分析.在这个问题中样本是( )
| A. | 56940名考生 | B. | 所抽取的2000名考生的数学成绩 | ||
| C. | 56940名考生的数学成绩 | D. | 所抽取的2000名考生 |