题目内容

2.如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.
(1)求证:△BDO≌△EDC.
(2)若OB=6,则四边形OBCE的面积为18$\sqrt{3}$.

分析 (1)证明方法比较多,根据全等三角形判定方法判定即可.
(2)先证明四边形OBCE是菱形,求出对角线的长即可求面积.

解答 (1)证明:∵∠COB=60°且OB=OC,
∴△BOC为等边三角形,∠OBC=60°,
又∵点D是OC的中点,
∴OD=CD,∠OBD=$\frac{1}{2}∠OBC$=30°,
又∵点C是半圆上一点且∠COB=60°,
∴∠CEB=$\frac{1}{2}∠COB$=30°,
∴∠OBD=∠CEB,
在△BDO与△EDC中,
$\left\{\begin{array}{l}{∠OBD=∠CED}\\{∠BDO=∠EDC}\\{OD=CD}\end{array}\right.$,
∴△BDO≌△EDC(AAS);
(2)∵∴△BDO≌△EDC,
∴EC=OB,
∵△OBC是等边三角形,
∴OB=BC=EC=EO,
∴四边形OBCE是菱形,
∴S菱形OBCE=$\frac{1}{2}$•OC•EB=$\frac{1}{2}$•6•6$\sqrt{3}$=18$\sqrt{3}$.

点评 本题考查全等三角形的判定和性质、菱形的判定和性质、菱形的面积,解题的关键是熟练掌握全等三角形的判定,记住菱形的面积等于对角线乘积的一半,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网