题目内容

6.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.

分析 (1)欲证明△ADB≌△AFC,只要证明∠ACF=∠2即可.
(2)由(1)可知BD=CF,只要证明BC=BF,可得EC=EF=1,即可解决问题.

解答 证明:(1)如图,

∵∠BAC=90°,
∴∠2+∠F=90°,∠ACF+∠F=90°,
∴∠ACF=∠2,
在△ABF和△ACD中,
$\left\{\begin{array}{l}{∠CAF=∠BAD=90°}\\{∠ACF=∠2}\\{AC=AB}\end{array}\right.$,
∴△ACF≌△ABD.

(2)∵△ACF≌△ABD,
∴BD=CF,
∵BE⊥CF,
∴∠BEC=∠BEF=90°,
∵∠1+∠BCE=90°,∠2+∠F=90°,
∴∠BCF=∠F,
∴BC=BF,CE=EF=1,
∴BD=CF=2.

点评 本题考查全等三角形的判定和性质、等腰直角三角形的性质、等腰三角形的性质等知识,解题的关键是利用全等三角形的对应边相等解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网