题目内容

2.先化简,再求值:$\frac{x+2y}{x+y}$+$\frac{{2y}^{2}}{{x}^{2}{-y}^{2}}$,其中x=-2,y=-1.

分析 利用分式的基本性质将原式通分、合并同类项后化简,再代入x=-2,y=-1即可得出结论.

解答 解:原式=$\frac{(x+2y)(x-y)}{(x+y)(x-y)}$+$\frac{2{y}^{2}}{(x+y)(x-y)}$,
=$\frac{{x}^{2}+xy-2{y}^{2}+2{y}^{2}}{(x+y)(x-y)}$,
=$\frac{x(x+y)}{(x+y)(x-y)}$,
=$\frac{x}{x-y}$,
=$\frac{-2}{-2-(-1)}$,
=2.

点评 本题考查了分式的化简求值,解题的关键是:将原式化简为$\frac{x}{x-y}$.本题属于基础题,难度不大,再做形如此类题型时,切记分母不能为0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网