题目内容

4.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.
求证:AB=AC.

分析 证明Rt△BOF≌Rt△COE,根据全等三角形的性质得到∠FBO=∠ECO,根据等腰三角形的性质得到∠CBO=∠BCO,得到∠ABC=∠ACB,根据等腰三角形的判定定理证明结论.

解答 证明:在Rt△BOF和Rt△COE中,
$\left\{\begin{array}{l}{OF=OE}\\{OB=OC}\end{array}\right.$,
∴Rt△BOF≌Rt△COE,
∴∠FBO=∠ECO,
∵OB=OC,
∴∠CBO=∠BCO,
∴∠ABC=∠ACB,
∴AB=AC.

点评 本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网