ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóµãA¡¢BµÄ×ø±ê¼°Ïß¶ÎABµÄ³¤£»
£¨2£©Çó¡÷ABCµÄÍâ½ÓÔ²¡ÑDµÄ°ë¾¶£»
£¨3£©Èô£¨2£©ÖеġÑD½»Å×ÎïÏߵĶԳÆÖáÓÚM¡¢NÁ½µã£¨µãMÔÚµãNµÄÉÏ·½£©£¬ÔÚ¶Ô³ÆÖáÓұߵÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãP£¬Á¬½ÓPM¡¢PN¡¢PC£¬Ïß¶ÎPC½»ÏÒMNÓÚµãG£®ÈôPC°ÑͼÐÎPMCN£¨Ö¸Ô²»¡
| MCN |
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©Ö±½Ó½â·½³ÌµÃ³öy=0ʱxµÄÖµ£¬¼´¿ÉµÃ³öA£¬Bµã×ø±ê£¬½ø¶øµÃ³öABµÄ³¤£»
£¨2£©ÀûÓÃDC=DA£¬½áºÏ¹´¹É¶¨ÀíµÃ³öDµã×ø±ê¼´¿É£»
£¨3£©ÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣬ÔÚ°ë¾¶DNÉϽØÈ¡EN=MG£¬½ø¶øÓÉÔ²µÄ¶Ô³ÆÐԿɵãºÍ¼ÐÎPMCµÄÃæ»ýÓëͼÐÎPECNµÄÃæ»ýÏàµÈ£¬ÓÉPC°ÑͼÐÎPMCN£¨Ö¸Ô²»¡
ºÍÏß¶ÎPM¡¢PN×é³ÉµÄͼÐΣ©·Ö³ÉÁ½²¿·Ö£¬ÕâÁ½²¿·ÖÃæ»ýÖ®²îΪ4£¬µÃ³öPµã×ø±ê£®
£¨2£©ÀûÓÃDC=DA£¬½áºÏ¹´¹É¶¨ÀíµÃ³öDµã×ø±ê¼´¿É£»
£¨3£©ÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣬ÔÚ°ë¾¶DNÉϽØÈ¡EN=MG£¬½ø¶øÓÉÔ²µÄ¶Ô³ÆÐԿɵãºÍ¼ÐÎPMCµÄÃæ»ýÓëͼÐÎPECNµÄÃæ»ýÏàµÈ£¬ÓÉPC°ÑͼÐÎPMCN£¨Ö¸Ô²»¡
| MCN |
½â´ð£º½â£º£¨1£©Áîy=0£¬µÃ£ºx2-4x+1=0£¬
½âµÃ£ºx1=2+
£¬x2=2-
£®
¡àµãAµÄ×ø±êΪ£¨2-
£¬0£©£¬µãBµÄ×ø±êΪ£¨2+
£¬0£©£®
¡àABµÄ³¤Îª2
£®
£¨2£©ÓÉÒÑÖªµÃµãCµÄ×ø±êΪ£¨0£¬1£©£¬
ÓÉy=x2-4x+1=£¨x-2£©2-3£¬
¿ÉÖªÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=2£¬
Éè¡÷ABCµÄÍâ½ÓÔ²Ô²ÐÄDµÄ×ø±êΪ£¨2£¬n£©£¬Èçͼ¢Ù£¬Á¬½ÓAD¡¢CD£¬
¡àDC=DA£¬¼´22+£¨n-1£©2=[2-£¨2-
£©]2+n2£¬
½âµÃ£ºn=1£¬
¡àµãDµÄ×ø±êΪ£¨2£¬1£©£¬
¡à¡÷ABCµÄÍâ½ÓÔ²¡ÑD°ë¾¶Îª2£®
£¨3£©½â·¨Ò»£ºÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣮
ÔÚ°ë¾¶DNÉϽØÈ¡EN=MG£¬
ÓÖ¡ßDM=DN£¬¡àDG=DE£®
ÔòµãGÓëµãE¹ØÓÚµãD¶Ô³Æ£¬Èçͼ¢Ú£¬Á¬½ÓCD¡¢CE¡¢PD¡¢PE£®
ÓÉÔ²µÄ¶Ô³ÆÐԿɵãºÍ¼ÐÎPMCµÄÃæ»ýÓëͼÐÎPECNµÄÃæ»ýÏàµÈ£®
ÓÉPC°ÑͼÐÎPMCN£¨Ö¸Ô²»¡
ºÍÏß¶ÎPM¡¢PN×é³ÉµÄͼÐΣ©·Ö³ÉÁ½²¿·Ö£¬ÕâÁ½²¿·ÖÃæ»ýÖ®²îΪ4£®
¿ÉÖª¡÷PCEµÄÃæ»ýΪ4£®
ÉèµãP×ø±êΪ£¨m£¬n£©
¡àS¡÷CEP=2S¡÷CDP=2¡Á
•CD•|n-1|=4£¬
¡àn1=3£¬n2=-1£®
ÓɵãPÔÚÅ×ÎïÏßy=x2-4x+1ÉÏ£¬µÃ£º
x2-4x+1=3£¬
½âµÃ£ºx1=2+
£¬x2=2-
£¨ÉáÈ¥£©£»
»òx2-4x+1=-1£¬
½âµÃ£ºx3=2+
£¬x4=2-
£¨ÉáÈ¥£©£®
¡àµãPµÄ×ø±êΪ£¨2+
£¬-1£©»ò£¨2+
£¬3£©£®
½â·¨¶þ£º
ÉèµãP×ø±êΪ£¨m£¬n£©£¬µãG×ø±êΪ£¨2£¬c£©£¬Ö±ÏßPCµÄ½âÎöʽΪy=kx+b£¬
µÃ£º
£¬½âµÃ£º
£¬
¡àÖ±ÏßPCµÄ½âÎöʽΪy=
x+1£®
µ±x=2ʱ£¬c=
+1£®
ÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣬
Á¬½ÓCD£¬Í¼ÐÎPCNµÄÃæ»ýÓëͼÐÎPMCµÄÃæ»ý²îΪ£º
|SÉÈÐÎDCN+S¡÷GCD+S¡÷PGN-£¨SÉÈÐÎMCD-S¡÷GCD+S¡÷PMG£©|
=|2S¡÷GCD+S¡÷PGN-S¡÷PMG|£¬
=|2¡Á
¡Á2£¨c-1£©+
£¨1+c£©£¨m-2£©-
£¨3-c£©£¨m-2£©|
=|2£¨c-10+
£¨2c-2£©£¨m-2£©|
=|£¨c-1£©£¨2+m-2£©|
=|[
+1-1]m|
=|2£¨n-1£©|
=4£¬
¡àn1=3£¬n2=-1£®
ÓɵãPÔÚÅ×ÎïÏßy=x2-4x+1ÉÏ£¬µÃ£º
x2-4x+1=3£¬½âµÃ£ºx1=2+
£¬x2=2-
£¨ÉáÈ¥£©£»
»òx2-4x+1=-1£¬½âµÃ£ºx3=2+
£¬x4=2-
£¨ÉáÈ¥£©£®
¡àµãPµÄ×ø±êΪ£¨2+
£¬-1£©»ò£¨2+
£¬3£©£®
½âµÃ£ºx1=2+
| 3 |
| 3 |
¡àµãAµÄ×ø±êΪ£¨2-
| 3 |
| 3 |
¡àABµÄ³¤Îª2
| 3 |
£¨2£©ÓÉÒÑÖªµÃµãCµÄ×ø±êΪ£¨0£¬1£©£¬
ÓÉy=x2-4x+1=£¨x-2£©2-3£¬
¿ÉÖªÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=2£¬
Éè¡÷ABCµÄÍâ½ÓÔ²Ô²ÐÄDµÄ×ø±êΪ£¨2£¬n£©£¬Èçͼ¢Ù£¬Á¬½ÓAD¡¢CD£¬
¡àDC=DA£¬¼´22+£¨n-1£©2=[2-£¨2-
| 3 |
½âµÃ£ºn=1£¬
¡àµãDµÄ×ø±êΪ£¨2£¬1£©£¬
¡à¡÷ABCµÄÍâ½ÓÔ²¡ÑD°ë¾¶Îª2£®
£¨3£©½â·¨Ò»£ºÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣮
ÔÚ°ë¾¶DNÉϽØÈ¡EN=MG£¬
ÓÖ¡ßDM=DN£¬¡àDG=DE£®
ÔòµãGÓëµãE¹ØÓÚµãD¶Ô³Æ£¬Èçͼ¢Ú£¬Á¬½ÓCD¡¢CE¡¢PD¡¢PE£®
ÓÉÔ²µÄ¶Ô³ÆÐԿɵãºÍ¼ÐÎPMCµÄÃæ»ýÓëͼÐÎPECNµÄÃæ»ýÏàµÈ£®
ÓÉPC°ÑͼÐÎPMCN£¨Ö¸Ô²»¡
| MCN |
¿ÉÖª¡÷PCEµÄÃæ»ýΪ4£®
ÉèµãP×ø±êΪ£¨m£¬n£©
¡àS¡÷CEP=2S¡÷CDP=2¡Á
| 1 |
| 2 |
¡àn1=3£¬n2=-1£®
ÓɵãPÔÚÅ×ÎïÏßy=x2-4x+1ÉÏ£¬µÃ£º
x2-4x+1=3£¬
½âµÃ£ºx1=2+
| 6 |
| 6 |
»òx2-4x+1=-1£¬
½âµÃ£ºx3=2+
| 2 |
| 2 |
¡àµãPµÄ×ø±êΪ£¨2+
| 2 |
| 6 |
½â·¨¶þ£º
ÉèµãP×ø±êΪ£¨m£¬n£©£¬µãG×ø±êΪ£¨2£¬c£©£¬Ö±ÏßPCµÄ½âÎöʽΪy=kx+b£¬
µÃ£º
|
|
¡àÖ±ÏßPCµÄ½âÎöʽΪy=
| n-1 |
| m |
µ±x=2ʱ£¬c=
| 2(n-1) |
| m |
ÓÉ£¨2£©Öª£¬CÊÇ»¡MNµÄÖе㣬
Á¬½ÓCD£¬Í¼ÐÎPCNµÄÃæ»ýÓëͼÐÎPMCµÄÃæ»ý²îΪ£º
|SÉÈÐÎDCN+S¡÷GCD+S¡÷PGN-£¨SÉÈÐÎMCD-S¡÷GCD+S¡÷PMG£©|
=|2S¡÷GCD+S¡÷PGN-S¡÷PMG|£¬
=|2¡Á
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=|2£¨c-10+
| 1 |
| 2 |
=|£¨c-1£©£¨2+m-2£©|
=|[
| 2(c-1) |
| m |
=|2£¨n-1£©|
=4£¬
¡àn1=3£¬n2=-1£®
ÓɵãPÔÚÅ×ÎïÏßy=x2-4x+1ÉÏ£¬µÃ£º
x2-4x+1=3£¬½âµÃ£ºx1=2+
| 6 |
| 6 |
»òx2-4x+1=-1£¬½âµÃ£ºx3=2+
| 2 |
| 2 |
¡àµãPµÄ×ø±êΪ£¨2+
| 2 |
| 6 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÓ¦ÓÃÒÔ¼°¹´¹É¶¨ÀíÒÔ¼°Ò»Ôª¶þ´Î·½³ÌµÄ½â·¨µÈ֪ʶ£¬ÀûÓÃÊýÐνáºÏÈý½ÇÐÎÃæ»ýµÃ³öPµã×ø±êÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿