ÌâÄ¿ÄÚÈÝ

2£®ÈçͼËùʾ£¬Å×ÎïÏßy=$\frac{1}{4}$x2+mx+nÓëÖ±Ïßy=$\frac{1}{2}$x-2ÏཻÓÚµãAºÍµãB£¬ÆäÖеãAÔÚyÖáÉÏ£¬¹ýµãB×÷BC¡ÍxÓË£¬´¹×ãΪµãC£¨6£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPÊÇÏß¶ÎOCÉÏÒ»µã£®¹ýµãP×÷PM¡ÍxÖá½»Ö±ÏßABÓÚµãM£¬½»Å×ÎïÏßÓÚµãN£®ÈôÉèµãPµÄ×ø±êΪ£¨t£¬0£©£¬Ïß¶ÎMNµÄ³¤Îªs£¬ÇósÓëtµÄº¯Êý¹ØÏµÊ½£»
£¨3£©Á¬½ÓMB¡¢NC£¬ÊÇ·ñ´æÔÚµãPʹËıßÐÎMNCBΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÇóµãA¡¢BµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¸ù¾Ý½âÎöʽ·Ö±ð±íʾM¡¢NÁ½µãµÄ×ø±ê£¬ÓÉMN=PM+PN»òPN-PM½øÐмÆË㣻
£¨3£©´æÔÚ£¬¸ù¾ÝMN=BCÁз½³Ì¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©µ±x=6ʱ£¬y=$\frac{1}{2}$¡Á6-2=1£¬
¡àB£¨6£¬1£©£¬
µ±x=0ʱ£¬y=-2£¬$\left\{\begin{array}{l}{\frac{1}{4}{x}^{2}+6m+n=1}\\{n=-2}\end{array}\right.$
¡àA£¨0£¬-2£©£¬
°ÑA£¨0£¬-2£©£¬B£¨6£¬1£©´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº$\left\{\begin{array}{l}{\frac{1}{4}¡Á{6}^{2}+6m+n=1}\\{n=-2}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-1}\\{n=-2}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=$\frac{1}{4}$x2-x-2£»

£¨2£©ÓÉÌâÒâµÃ£ºM£¨t£¬$\frac{1}{2}$t-2£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$-t-2£©£¬
µ±y=0ʱ£¬$\frac{1}{2}$x-2=0£¬
x=4£¬
¡àD£¨4£¬0£©£¬
µ±0¡Üt¡Ü4ʱ£¬Èçͼ1£¬PM=2-$\frac{1}{2}$t£¬PN=-$\frac{1}{4}{t}^{2}$+t+2£¬
¡àMN=PN-PM=-$\frac{1}{4}{t}^{2}$+t+2-2+$\frac{1}{2}$t=-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t£¬
¼´s=-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t£»
µ±4£¼t¡Ü6ʱ£¬Èçͼ2£¬PM=$\frac{1}{2}$t-2£¬PN=-$\frac{1}{4}{t}^{2}$+t+2£¬
¡àMN=PM+PN=$\frac{1}{2}$t-2-$\frac{1}{4}{t}^{2}$+t+2=-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t£¬
¼´s=-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t£»
×ÛÉÏËùÊö£¬sÓëtµÄº¯Êý¹ØÏµÊ½Îª£ºs=-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t£»

£¨3£©´æÔÚ£¬Èçͼ3£¬
¡ßPM¡ÍxÖᣬBC¡ÍxÓË£¬
¡àPM¡ÎBC£¬
¼´MN¡ÎBC£¬
¡àµ±MN=BCʱ£¬ËıßÐÎMNCBΪƽÐÐËıßÐΣ¬
¼´-$\frac{1}{4}{t}^{2}$+$\frac{3}{2}$t=1£»
½âµÃ£ºt=3$¡À\sqrt{5}$£¬
¡àP£¨3+$\sqrt{5}$£¬0£©»ò£¨3-$\sqrt{5}$£¬0£©£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÄѶÈÊÊÖУ¬¿¼²éÁËÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢º¯ÊýÓë×ø±êÖáµÄ½»µã¡¢Æ½ÐÐËıßÐεÄÅж¨£¬ÔÚº¯ÊýµÄ×ÛºÏÌâÖг£ÀûÓú¯ÊýµÄ½âÎöʽ±íʾÏ߶εij¤£¬±¾ÌâÒ²ÊÇÈç´Ë£¬µ«Òª×¢Òâ×ø±êÓëͼÐÎÌØµã£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø