ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=-x2+2x+3ÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬µãDÊǸÃÅ×ÎïÏߵĶ¥µã£®
£¨1£©ÇóB£¬DÁ½µãµÄ×ø±ê¼°Ö±ÏßACµÄ½âÎöʽ£»
£¨2£©Ö±ÏßDEΪÕâÌõÅ×ÎïÏߵĶԳÆÖᣬÇëÔÚÖ±ÏßDEÉÏÕÒÒ»µãM£¬Ê¹¡÷ACMµÄÖܳ¤×îС£¬Çó³öMµãµÄ×ø±ê£»
£¨3£©µãPÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýPµã×öÖ±Ïßl¡ÎAC½»Å×ÎïÏßÓÚµãQ£¬ÊÔ̽¾¿£ºËæ×ÅPµãµÄÔ˶¯£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹ÒÔµãA£¬P£¬Q£¬CΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³ö·ûºÏÌõ¼þµÄµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÇóB£¬DÁ½µãµÄ×ø±ê¼°Ö±ÏßACµÄ½âÎöʽ£»
£¨2£©Ö±ÏßDEΪÕâÌõÅ×ÎïÏߵĶԳÆÖᣬÇëÔÚÖ±ÏßDEÉÏÕÒÒ»µãM£¬Ê¹¡÷ACMµÄÖܳ¤×îС£¬Çó³öMµãµÄ×ø±ê£»
£¨3£©µãPÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýPµã×öÖ±Ïßl¡ÎAC½»Å×ÎïÏßÓÚµãQ£¬ÊÔ̽¾¿£ºËæ×ÅPµãµÄÔ˶¯£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹ÒÔµãA£¬P£¬Q£¬CΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³ö·ûºÏÌõ¼þµÄµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺ѹÖáÌâ
·ÖÎö£º£¨1£©Áîy=0£¬½â·½³ÌÇó³öA¡¢BµÄ×ø±ê£¬°Ñº¯Êý½âÎöʽÕûÀí³É¶¥µãʽÐÎʽÇó³ö¶¥µãDµÄ×ø±ê£¬ÔÙÁîx=0Çó³öµãCµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÇó½â¼´¿É£»
£¨2£©¸ù¾ÝÖá¶Ô³ÆÈ·¶¨×î¶Ì·ÏßÎÊÌ⣬Á¬½ÓBC£¬Óë¶Ô³ÆÖáµÄ½»µã¼´ÎªËùÇóµÄµãM£¬È»ºóÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬ÔÙÇó½â¼´¿É£»
£¨3£©·ÖµãPÔÚµãQµÄ×ó±ßºÍÓÒ±ßÁ½ÖÖÇé¿ö£¬¸ù¾ÝƽÐÐËıßÐÎµÄ¶Ô±ßÆ½ÐÐÇÒÏàµÈ£¬´ÓµãA¡¢CµÄ×ø±ê¹ØÏµ£¬ÓõãPµÄ×ø±ê±íʾ³öµãQµÄ×ø±ê£¬È»ºó°ÑµãQµÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÇó½â¼´¿É£®
£¨2£©¸ù¾ÝÖá¶Ô³ÆÈ·¶¨×î¶Ì·ÏßÎÊÌ⣬Á¬½ÓBC£¬Óë¶Ô³ÆÖáµÄ½»µã¼´ÎªËùÇóµÄµãM£¬È»ºóÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬ÔÙÇó½â¼´¿É£»
£¨3£©·ÖµãPÔÚµãQµÄ×ó±ßºÍÓÒ±ßÁ½ÖÖÇé¿ö£¬¸ù¾ÝƽÐÐËıßÐÎµÄ¶Ô±ßÆ½ÐÐÇÒÏàµÈ£¬´ÓµãA¡¢CµÄ×ø±ê¹ØÏµ£¬ÓõãPµÄ×ø±ê±íʾ³öµãQµÄ×ø±ê£¬È»ºó°ÑµãQµÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©Áîy=0£¬Ôò-x2+2x+3=0£¬
ÕûÀíµÃ£¬x2-2x-3=0£¬
½âµÃx1=-1£¬x2=3£¬
ËùÒÔ£¬µãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡à¶¥µãDµÄ×ø±êΪ£¨1£¬4£©£¬
Áîx=0£¬Ôòy=3£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨0£¬3£©£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
Ôò
£¬
½âµÃ
£®
ËùÒÔ£¬Ö±ÏßACµÄ½âÎöʽΪy=3x+3£»
£¨2£©¡ßA¡¢B¹ØÓÚ¶Ô³ÆÖáÖ±Ïßx=1¶Ô³ÆÖᣬ
¡àÖ±ÏßBCÓë¶Ô³ÆÖáµÄ½»µã¼´ÎªÖ±ÏßDEÉÏʹ¡÷ACMµÄÖܳ¤×îСµÄµã£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=mx+n£¬
Ôò
£¬
½âµÃ
£¬
ËùÒÔ£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
µ±x=1ʱ£¬y=-1+3=2£¬
ËùÒÔ£¬µãMµÄ×ø±êΪ£¨1£¬2£©£»
£¨3£©¡ßÖ±Ïßl¡ÎAC£¬
¡àPQ¡ÎACÇÒPQ=AC£¬
¡ßA£¨-1£¬0£©£¬C£¨0£¬3£©£¬
¡àÉèµãPµÄ×ø±êΪ£¨x£¬0£©£¬
Ôò¢ÙÈôµãQÔÚxÖáÉÏ·½£¬ÔòµãQµÄ×ø±êΪ£¨x+1£¬3£©£¬
´Ëʱ£¬-£¨x+1£©2+2£¨x+1£©+3=3£¬
½âµÃx1=-1£¨ÉáÈ¥£©£¬x2=1£¬
ËùÒÔ£¬µãQµÄ×ø±êΪ£¨2£¬3£©£¬
¢ÚÈôµãQÔÚxÖáÏ·½£¬ÔòµãQµÄ×ø±êΪ£¨x-1£¬-3£©£¬
´Ëʱ£¬-£¨x-1£©2+2£¨x-1£©+3=-3£¬
ÕûÀíµÃ£¬x2-4x-3=0£¬
½âµÃx1=2+
£¬x2=2-
£¬
ËùÒÔ£¬µãQµÄ×ø±êΪ£¨1+
£¬-3£©»ò£¨1-
£¬-3£©£¬
×ÛÉÏËùÊö£¬µãQµÄ×ø±êΪ£¨2£¬3£©»ò£¨1+
£¬-3£©»ò£¨1-
£¬-3£©£®
ÕûÀíµÃ£¬x2-2x-3=0£¬
½âµÃx1=-1£¬x2=3£¬
ËùÒÔ£¬µãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡à¶¥µãDµÄ×ø±êΪ£¨1£¬4£©£¬
Áîx=0£¬Ôòy=3£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨0£¬3£©£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
Ôò
|
½âµÃ
|
ËùÒÔ£¬Ö±ÏßACµÄ½âÎöʽΪy=3x+3£»
£¨2£©¡ßA¡¢B¹ØÓÚ¶Ô³ÆÖáÖ±Ïßx=1¶Ô³ÆÖᣬ
¡àÖ±ÏßBCÓë¶Ô³ÆÖáµÄ½»µã¼´ÎªÖ±ÏßDEÉÏʹ¡÷ACMµÄÖܳ¤×îСµÄµã£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=mx+n£¬
Ôò
|
½âµÃ
|
ËùÒÔ£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
µ±x=1ʱ£¬y=-1+3=2£¬
ËùÒÔ£¬µãMµÄ×ø±êΪ£¨1£¬2£©£»
£¨3£©¡ßÖ±Ïßl¡ÎAC£¬
¡àPQ¡ÎACÇÒPQ=AC£¬
¡ßA£¨-1£¬0£©£¬C£¨0£¬3£©£¬
¡àÉèµãPµÄ×ø±êΪ£¨x£¬0£©£¬
Ôò¢ÙÈôµãQÔÚxÖáÉÏ·½£¬ÔòµãQµÄ×ø±êΪ£¨x+1£¬3£©£¬
´Ëʱ£¬-£¨x+1£©2+2£¨x+1£©+3=3£¬
½âµÃx1=-1£¨ÉáÈ¥£©£¬x2=1£¬
ËùÒÔ£¬µãQµÄ×ø±êΪ£¨2£¬3£©£¬
¢ÚÈôµãQÔÚxÖáÏ·½£¬ÔòµãQµÄ×ø±êΪ£¨x-1£¬-3£©£¬
´Ëʱ£¬-£¨x-1£©2+2£¨x-1£©+3=-3£¬
ÕûÀíµÃ£¬x2-4x-3=0£¬
½âµÃx1=2+
| 7 |
| 7 |
ËùÒÔ£¬µãQµÄ×ø±êΪ£¨1+
| 7 |
| 7 |
×ÛÉÏËùÊö£¬µãQµÄ×ø±êΪ£¨2£¬3£©»ò£¨1+
| 7 |
| 7 |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁËÅ×ÎïÏßÓëxÖáµÄ½»µãÎÊÌ⣬´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬Öá¶Ô³ÆÈ·¶¨×î¶Ì·ÏßÎÊÌ⣬ƽÐÐËıßÐÎµÄ¶Ô±ßÆ½ÐÐÇÒÏàµÈµÄÐÔÖÊ£¬£¨2£©È·¶¨³öµãMµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£¬£¨3£©ÄѵãÔÚÓÚ·ÖÇé¿öÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
µÈÑüÈý½ÇÐεÄÒ»¸ö½ÇÊÇ48¡ã£¬ËüµÄÒ»¸öµ×½ÇµÄ¶ÈÊýÊÇ£¨¡¡¡¡£©
| A¡¢48¡ã |
| B¡¢48¡ã»ò42¡ã |
| C¡¢42¡ã»ò66¡ã |
| D¡¢48¡ã»ò66¡ã |
ÏÂÁе÷²éÖÐÐèÒª×öÆÕ²éµÄÊÇ£¨¡¡¡¡£©
| A¡¢Á˽âÒ»ÅúÅÚµ¯µÄÃüÖо«¶È |
| B¡¢µ÷²éÈ«¹úÖÐѧÉúµÄÉÏÍøÇé¿ö |
| C¡¢Éó²éijÎÄÕÂÖеĴí±ð×Ö |
| D¡¢¿¼²éijÖÖÅ©×÷ÎïµÄ³¤ÊÆ |