题目内容
| 1 |
| 2 |
考点:直线与圆的位置关系
专题:
分析:当BA′与⊙O相切时,可连接圆心与切点,通过构建直角三角形,求出∠A′BO的度数,然后再根据BA′的不同位置分类讨论.
解答:
解:如图;
①当BA′与⊙O相切,且BA′位于BC上方时,设切点为P,连接OP,则∠OPB=90°;
Rt△OPB中,OB=2OP,
∴∠A′BO=30°;
∴∠ABA′=60°;
②当BA′与⊙O相切,且BA′位于BC下方时;
同①,可求得∠A′BO=30°;
此时∠ABA′=90°+30°=120°;
故旋转角α的度数为60°或120°,
故答案为:60°或120°.
①当BA′与⊙O相切,且BA′位于BC上方时,设切点为P,连接OP,则∠OPB=90°;
Rt△OPB中,OB=2OP,
∴∠A′BO=30°;
∴∠ABA′=60°;
②当BA′与⊙O相切,且BA′位于BC下方时;
同①,可求得∠A′BO=30°;
此时∠ABA′=90°+30°=120°;
故旋转角α的度数为60°或120°,
故答案为:60°或120°.
点评:此题主要考查的是切线的性质,以及解直角三角形的应用;需注意切线的位置有两种情况,不要漏解.
练习册系列答案
相关题目
已知线段AB两端的坐标A(4,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的
后得到线段CD,A点的对应点为C点,则端点C的坐标为( )
| 1 |
| 2 |
| A、(2,3) |
| B、(2,1) |
| C、(4,3) |
| D、(4,1) |
A、
| ||
B、
| ||
C、
| ||
D、
|