题目内容

2.如图所示,AB是⊙O的直径,点C是$\widehat{BD}$的中点,∠COB=60°,过点C作CE⊥AD,交AD的延长线于点E
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.

分析 (1)连接OD,可证明△AOD为等边三角形,可得到∠EAO=∠COB,可证明OC∥AE,可证得结论;
(2)利用△OCD和△AOD都是等边三角形可证得结论.

解答 (1)证明:
连接OD,如图,
∵C是$\widehat{BD}$的中点,
∴∠BOC=∠COD=60°,
∴∠AOD=60°,且OA=OD,
∴△AOD为等边三角形,
∴∠EAB=∠COB,
∴OC∥AE,
∴∠OCE+∠AEC=180°,
∵CE⊥AE,
∴∠OCE=180°-90°=90°,即OC⊥EC,
∵OC为圆的半径,
∴CE为圆的切线;
(2)解:
四边形AOCD是菱形,理由如下:
由(1)可知△AOD和△COD均为等边三角形,
∴AD=AO=OC=CD,
∴四边形AOCD为菱形.

点评 本题主要考查切线和菱形的判定,掌握切线的判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网