题目内容

2.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2$\sqrt{3}$,则DE=2.

分析 连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.

解答 解:连接DC,
∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,
∴DC=DA,
∴∠ACD=∠A=30°,∠BCD=30°,
∴DE=$\frac{1}{2}DC$,
∵∠BCD=30°,
∴CD=$\frac{BC}{cos30°}$=4,
∴DE=2,
故答案为:2.

点评 本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网