题目内容

15.如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD,判断AE与DE的关系,并证明你的结论.

分析 先根据AB⊥BC得出∠B=90°,再由△ABE≌△ECD可知∠A=∠DEC,∠AEB=∠EDC,∠B=∠C=90°,由∠A+∠AEB=90°,∠DEC+∠D=90°可知∠AEB+∠DEC=90°,故∠AED=90°,由此可得出结论.

解答 解:AE⊥DE.
∵AB⊥BC,
∴∠B=90°.
∵△ABE≌△ECD,
∴∠A=∠DEC,∠AEB=∠EDC,∠B=∠C=90°.
∵∠A+∠AEB=90°,∠DEC+∠D=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,即AE⊥DE.

点评 本题考查的是全等三角形的性质,熟知全等三角形的对应角相等是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网