题目内容
7.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x千米,原定的时间为y小时,则可列方程组为( )| A. | $\left\{\begin{array}{l}{\frac{x}{15}-15=y}\\{\frac{x}{12}+12=y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{\frac{x}{15}+15=y}\\{\frac{x}{12}-12=y}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{x}{15}-\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{x}{15}+\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$ |
分析 设通讯员到达某地的路程是x千米,原定的时间为y小时,根据通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟列出方程组.
解答 解:设通讯员到达某地的路程是x千米,原定的时间为y小时,由题意得:
$\left\{\begin{array}{l}{\frac{x}{15}+\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$,
故选D.
点评 此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
练习册系列答案
相关题目
2.
如图,在半径为1的⊙O中,∠BAC=30°,点D是劣弧CB的中点,点P是直径AB上的一个动点,则CP+DP的最小值为( )
| A. | $\sqrt{2}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}-1$ |
19.
如图,点E,F,G,H分别是任意四边形ABCD中AD,BD,CA,BC的中点.若四边形EFCH是菱形,则四边形ABCD的边需满足的条件是( )
| A. | AB∥DC | B. | AC=BD | C. | AC⊥BD | D. | AB=DC |