题目内容

14.小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边△ABC外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够得到AD与DE的数量关系.
(1)AD与DE相等吗?请你说明理由;
【类比探究】
(2)当点D是线段BC上(不与点B,C重合)任意一点时,其它条件不变,如图2,试猜想AD与DE之间的数量关系,并证明你的结论;
【拓展应用】
(3)当点D在BC的延长线上,且满足CD=BC,连接AE,其它条件不变,如图3,若AD=6,求DE的长.

分析 (1)结论:AD=DE.由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;
(2)结论:AD=DE.由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;
(3)由BC=CD,得到AC=CD,得到CE垂直平分AD,证出△ADE是等边三角形,即可解决问题.

解答 解:(1)结论:AD=DE,理由如下:
如图1中,

∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF∥AC,
∴∠BDF=∠BFD=60°,
∴△BDF是等边三角形,
∴DF=BD,∠BFD=60°,
∵BD=CD,
∴DF=CD
∴∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD,
∵∠ADB=∠ADC=90°,
∴∠ADF=∠ECD=30°,
在△AFD与△EDC中,
$\left\{\begin{array}{l}{∠AFD=∠DCE}\\{DF=CD}\\{∠ADF=∠EDC}\end{array}\right.$,
∴△AFD≌△DCE(ASA),
∴AD=DE;

(2)结论:AD=DE;理由如下:
如图2,过点D作DF∥AC,交AB于点F,

∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°,
又∵DF∥AC,
∴∠BDF=∠BFD=60°,
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°,
∵EC是外角的平分线,
∠DCE=120°=∠AFD,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD,
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠ADF=∠EDC,
在△AFD≌△DCE中,
$\left\{\begin{array}{l}{∠ADF=∠EDC}\\{AF=CD}\\{∠AFD=∠DCE}\end{array}\right.$,
∴△AFD≌△DCE(ASA),
∴AD=DE;

(3)如图3中,

∵BC=CD,
∴AC=CD,
∵CE平分∠ACD,
∴CE垂直平分AD,
∴AE=DE,
∵∠ADE=60°,
∴△ADE是等边三角形,
∴DE=AD=6.

点评 本题主要考查了全等三角形的性质与判定,等边三角形的性质,平行线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网