题目内容

13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为$\frac{18}{5}$.

分析 首先过点C作CE⊥AD于点E,由∠ACB=90°,AC=3,BC=4,可求得AB的长,又由直角三角形斜边上的高等于两直角边乘积除以斜边,即可求得CE的长,由勾股定理求得AE的长,然后由垂径定理求得AD的长.

解答 解:过点C作CE⊥AD于点E,
则AE=DE,
∵∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴CE=$\frac{AC•BC}{AB}$=$\frac{12}{5}$,
∴AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=$\frac{9}{5}$,
∴AD=2AE=$\frac{18}{5}$,
故答案为$\frac{18}{5}$.

点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网