题目内容
考点:全等三角形的判定与性质,勾股定理
专题:计算题
分析:如图,以CD为边作等边△CDE,连接AE,根据三角形ABC与三角形CDE为等边三角形,利用等边三角形的性质得到两对边相等,利用等式的性质得到夹角相等,利用SAS得到三角形BCD与三角形ACE全等,利用全等三角形对应边相等得到BD=AE,求出AE的长,由∠ADC+∠CDE=∠ADE=90°,得到三角形ADE为直角三角形,利用勾股定理求出DE的长,即为DC的长,在三角形ADC中,利用三角形的面积公式即可求出三角形ADC面积.
解答:
解:如图,以CD为边作等边△CDE,连接AE,
∵△ABC与△CDE为等边三角形,
∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,
在△BCD和△ACE中,
,
∴△BCD≌△ACE(SAS),
∴BD=AE,
∵∠ADC=30°,
∴∠ADE=90°,
在Rt△ADE中,AE=5,AD=3,
根据勾股定理得:DE=
=4,
∴CD=DE=4,
则S=
AD•DC•sin30°=
×3×4×
=3.
故答案为:3.
∵△ABC与△CDE为等边三角形,
∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,
在△BCD和△ACE中,
|
∴△BCD≌△ACE(SAS),
∴BD=AE,
∵∠ADC=30°,
∴∠ADE=90°,
在Rt△ADE中,AE=5,AD=3,
根据勾股定理得:DE=
| AE2-AD2 |
∴CD=DE=4,
则S=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:3.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目