题目内容
阅读下面的解答过程,求y2+4y+8的最小值.
【解析】
y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.
仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.
m2+m+4的最小值是;最大值是5. 【解析】分析:(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值. 本题解析: 【解析】 (1)m2+m+4=(m+)2+,∵(m+)2≥0, ∴(m+)2+≥.则m2+m+4的最小值是; ,∵≤0,∴≤5,∴最大值是5.
练习册系列答案
相关题目