题目内容

阅读下面的解答过程,求y2+4y+8的最小值.

【解析】
y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.

仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.

m2+m+4的最小值是;最大值是5. 【解析】分析:(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值. 本题解析: 【解析】 (1)m2+m+4=(m+)2+,∵(m+)2≥0, ∴(m+)2+≥.则m2+m+4的最小值是; ,∵≤0,∴≤5,∴最大值是5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网