题目内容
13.| A. | 20° | B. | 40° | C. | 50° | D. | 70° |
分析 根据三角形的内角和定理求出∠BAC,根据线段垂直平分线的性质得到EC=EA,求出∠EAC,计算即可.
解答 解:∵∠ABC=90°,∠C=20°,
∴∠BAC=70°,
∵DE是边AC的垂直平分线,
∴EC=EA,
∴∠EAC=∠C=20°,
∴∠BAE=∠BAC-∠EAC=50°,
故选:C.
点评 本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
练习册系列答案
相关题目
3.
如图,抛物线y=-2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是( )
| A. | $\frac{m}{2}$(m2-4) | B. | $\frac{1}{2}$m2-2 | C. | $\frac{m}{2}$(4-m2) | D. | 2-$\frac{1}{2}$m2 |