题目内容
8.分析 根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.
解答 解:∵b<a<0<c,
∴a-b<0,a-c<0,
原式=-a+a-b-a+c=-a-b+c.
点评 此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
17.已知a,b为两个连续整数,且a<$\sqrt{19}$-1<b,则这两个整数是( )
| A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 4和5 |
18.下列根式中不是最简二次根式的是( )
| A. | $\sqrt{10}$ | B. | $\sqrt{12}$ | C. | $\sqrt{14}$ | D. | $\frac{\sqrt{17}}{2}$ |
20.下列说法正确的是( )
| A. | 一个数的相反数一定是负数 | B. | 若|a|=|b|,则a=b | ||
| C. | 若|m|=2,则m=±2 | D. | -a一定是负数 |
18.如果两条平行线被三条直线所截,那么一对内错角的角平分线一定( )
| A. | 互相平行 | B. | 互相垂直 | C. | 相交成锐角 | D. | 相交成钝角 |