【题目】已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若点的坐标为,求切线的方程;
(2)求四边形面积的最小值;
(3)求证:经过三点的圆必过定点,并求出所有定点坐标.
【题目】已知抛物线C:y2=2px(p>0)的交点为F,准线为l,过点F的直线与抛物线交于M,N两点,若MR⊥l,垂足为R,且∠NRM=∠NMR,则直线MN的斜率为( )A.±8B.±4C.±2 D.±2
【题目】已知函数f(x)= sinωx﹣ cosωx(ω>0),将函数y=|f(x)|的图象向左平移 个单位长度后关于y轴对称,则当ω取最小值时,g(x)=cos(ωx+ )的单调递减区间为( )A.[﹣ + , + ](k∈Z)B.[﹣ + , + ](k∈Z)C.[﹣ + , + ](k∈Z)D.[﹣ + , + ](k∈Z)
【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.
若,函数在上的最小值为4,求a的值;
对于中的函数在区间A上的值域是,求区间长度最大的注:区间长度区间的右端点区间的左断点;
若中函数的定义域是解不等式.
【题目】如图所示,已知AB,CD是圆O中两条互相垂直的直径,两个小圆与圆O以及AB,CD均相切,则往圆O内投掷一个点,该点落在阴影部分的概率为( ) A.12﹣8 B.3﹣2 C.8﹣5 D.6﹣4
【题目】已知数列的前项和为,点在直线上.数列 满足 ,且,前11项和为.
(1)求数列、的通项公式;
(2)设是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
【题目】数学名著《算学启蒙》中有如下问题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.”如图是源于其思想的一个程序框图,若输入的a,b的值分别为16,4,则输出的n的值为( ) A.4B.5C.6D.7
【题目】如图,在四棱锥中,底面为矩形, 是的中点, 是的中点, 是中点.
(1)证明: 平面;
(2)若平面底面, ,试在上找一点,使平面,并证明此结论.
【题目】已知函数f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.
【题目】某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题计结果如下图表所示:
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.