【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM. (1)求证:AD⊥BM;(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为 .
【题目】如图所示,抛物线C:x2=2py(p>0),其焦点为F,C上的一点M(4,m)满足|MF|=4.(1)求抛物线C的标准方程;(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.
【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为 .(1)若F是线段CD的中点,证明:EF⊥面DBC;(2)求二面角D﹣EC﹣B的平面角的余弦值.
【题目】已知正项数列{an}的前n项和为Sn , 若{an}和 都是等差数列,且公差相等.(1)求数列{an}的通项公式;(2)令bn= ,cn=bnbn+1 , 求数列{cn}的前n项和Tn .
【题目】在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知b2 , a2 , c2成等差数列.(1)求cosA的最小值;(2)若a=2,当A最大时,△ABC面积的最大值?
【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)(1)求曲线C的普通方程,并指出它是什么曲线.(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.
【题目】如果曲线2|x|﹣y﹣4=0与曲线x2+λy2=4(λ<0)恰好有两个不同的公共点,则实数λ的取值范围是 .
【题目】设动点P在棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上,记 =λ.当∠APC为锐角时,λ的取值范围是 .
【题目】在正方体ABCD﹣A1B1C1D1中,AD1与BD所成的角是 .
【题目】若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为 ,则三棱锥P﹣ABC的外接球的表面积为( )A.4πB.8πC.16πD.32π