题目内容

【题目】若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为 ,则三棱锥P﹣ABC的外接球的表面积为( )
A.4π
B.8π
C.16π
D.32π

【答案】A
【解析】解:如图,取BC中点D,连结AD、PD,

∵AB=AC,∴AD⊥BC,由因为PA⊥面ABC,∴BC⊥面PAD,

过A作AH⊥PD于D,易知AH⊥面PBC,

∴∠APD就是直线PA与平面PBC所成角,∴tan∠APD=

∵AD= ,∴

∵AB,AC,AP相互垂直,∴以AB,AC,AP为棱的长方体的外接球就是三棱锥P﹣ABC的外接球,

∴三棱锥P﹣ABC的外接球的半径R= ,三棱锥P﹣ABC的外接球的表面积为4πR2=4π;

所以答案是:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网