552.ΔABC在平面α内的射影是ΔA′B′C′,它们的面积分别是S、S′,若ΔABC所在平面与平面α所成二面角的大小为θ(0<θ<90°=,则S′=S·cosθ.
证法一 如图(1),当BC在平面α内,过A′作A′D⊥BC,垂足为D.
∵AA′⊥平面α,AD在平面α内的射影A′D垂直BC.
∴AD⊥BC.∴∠ADA′=θ.又S′=A′D·BC,S=AD·BC,cosθ=,∴S′=S·cosθ.
证法二 如图(2),当B、C两点均不在平面α内或只有一点(如C)在平面α内,可运用(1)的结论证明S′=S·cosθ.
551. 已知:正三棱柱ABC-A′B′C′中,AB′⊥BC′,BC=2,求:线段AB′在侧面上的射影长.
解析:如图,取BC的中点D.∵AD⊥BC,侧面⊥底面ABC,∴AD⊥侧面是斜线AB′在侧面的射影.又∵AB′⊥BC′,∴⊥BC′.
设BB′=x,在RtΔ中,BE∶BD=,=.
∵E是ΔBB′C的重心.∴BE=BC′=
∴x=·,解得:x=.∴线段AB′在侧面的射影长为.
550. 三棱柱ABC-A1B1C1的侧面三条对角线AB1、BC1、CA1中,AB1⊥BC1.求证:AB1⊥CA1.
证 方法1 如图,延长B1C1到D,使C1D=B1C1.连CD、A1D.因AB1⊥BC1,故AB1⊥CD;又B1C1=A1C1=C1D,故∠B1A1D=90°,于是DA1⊥平面AA1B1B.故AB1⊥平面A1CD,因此AB1⊥A1C.
方法2 如图,取A1B1、AB的中点D1、P.连CP、C1D1、A1P、D1B,易证C1D1⊥平面AA1B1B.由三垂线定理可得AB1⊥BD1,从而AB1⊥A1D.再由三垂线定理的逆定理即得AB1⊥A1C.
说明 证明本题的关键是作辅助面和辅助线,证明线面垂直常采用下列方法:
(1)利用线面垂直的定义;(2)证明直线垂直于平面内的两条相交直线;
(3)证明直线平行于平面的垂线;(4)证明直线垂直于与这平面平行的另一平面.
549. 已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F
(1)求证:AF⊥SC
(2)若平面AEF交SD于G,求证:AG⊥SD
解析:如图,欲证AF⊥SC,只需证SC垂直于AF所在平面,即SC⊥平面AEF,由已知,欲证SC⊥平面AEF,只需证AE垂直于SC所在平面,即AE⊥平面ABC,再由已知只需证AE⊥BC,而要证AE⊥BC,只需证BC⊥平面SAB,而这可由已知得证
证明 (1)∵SA⊥平面AC,BC平面AC,∴SA⊥BC
∵矩形ABCD,∴AB⊥BC ∴BC⊥平面SAB ∴BC⊥AE又SB⊥AE ∴AE⊥平面SBC
∴SC⊥平面AEF ∴AF⊥SC
(2)∵SA⊥平面AC ∴SA⊥DC,又AD⊥DC ∴DC⊥平面SAD ∴DC⊥AG
又由(1)有SC⊥平面AEF,AG平面AEF ∴SC⊥AG ∴AG⊥平面SDC ∴AG⊥SD
548. α和β是两个不重合的平面,在下列条件中可以判定平面α∥β的是( )
A.α、β都垂直于平面
B.α内不共线的三点到β的距离相等
C.l、m是α内的直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α,l∥β,m∥α,m∥β
解析:显然B、C不能推出α∥β,有α、β相交的情况存在,对于A、D,学了“面面垂直”后,就可以说明A不能推出α∥β,α、β有相交的可能,从而选D.
事实上,l∥α,m∥α,在α内任取一点A,过A作l′∥l,m′∥m,因为l,m异面,所以l′,m′相交,则可推出l′∥β,m′∥β.由面面平行的判定定理可推出α∥β.
547. 设a、b是两条异面直线,那么下列四个命题中的假命题是( )
A.经过直线a有且只有一个平面平行于直线b
B.经过直线a有且只有一个平面垂直于直线b
C.存在分别经过直线a和b的两个互相平行的平面
D.存在分别经过直线a和b的两个互相垂直的平面
解析:A、C、D均为真命题,B为假命题;∵若过a的平面α⊥b,则b垂直α内的直线a,从而a⊥b,那么限制a,b必须垂直,而条件中没有指明a、b是否垂直.
546. 设直线a在平面α内,则“平面α∥平面β”是“直线a∥平面β”的( )条件
A.充分但不必要 B.必要但不充分
C.充分且必要 D.不充分也不必要
解析:若α∥β,∵aα,∴a与β无公共点,∴a∥β.
若a∥β,aα,则α,β的关系不能确定,所以应选A.
545.如图,直线AC、DF被三个平行平面α、β、所截.
求证:=
证:(i)当AC,DF共面S时,
连AD,BE,CF
则AD∥BE∥CF
从而=
(ii)当AC、DE异面时,连CD设CD∩β=G
连AD、BG、GE、CF,如图
∵α∥β,平面ACD∩β=BG,平面ACD∩α=AD.
∴BG∥AD
∴=
同理可证:EG∥CF,∴=
综合(i)(ii)知:=.
544.a和b是两条异面直线,求证:过a且平行b的平面必平行于过b且平行于a的平面.
已知:a,b是异面直线,aα,bβ,a∥β,b∥α.
求证:α∥β.
证:过b作平面与平面α交于b′
543.一条直线和两个平行平面相交,求证:它和两个平面所成的角相等.
已知:α∥β,直线a分别与α和β相交于点A和A′.
求证:a与α所成的角与a与β所成的角相等.
解析:(1)当a⊥α时,∵α∥β,∴α⊥β.
即a与α所成的角与a与β所成的角都是直角.
(2)当a是α的斜线时,如图,设P是a上不同于A、A′的任意一点,过点P引a′⊥α, a′∩α=B,a′∩β=B′.
连结AB和A′B′.
∵a∥β,a′⊥α.
∴α′⊥β
由此可知,∠PAB是a和α所成的角,∠P′A′B是a和β所成的角,而AB∥A′B′.
∴∠PAB=∠PA′B′
即 a和α所成的角等于a和β所成的角.