(三)质疑答辩,排难解惑,发展思维.

例1.某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数

分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.

解:(略)

注意:

①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;

②解析法:必须注明函数的定义域;

③图象法:是否连线;

④列表法:选取的自变量要有代表性,应能反映定义域的特征.

例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:

 
第一次
第二次
第三次
第四次
第五次
第六次
王  伟
98
87
91
92
88
95
张  城
90
76
88
75
86
80
赵  磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6

请你对这三位同学在高一学年度的数学学习情况做一个分析.

分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?

解:(略)

注意:

①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:

②本例能否用解析法?为什么?

例3.画出函数的图象

解:(略)

例4.某市郊空调公共汽车的票价按下列规则制定:

(1)乘坐汽车5公里以内,票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.

解:(略)

注意:

①本例具有实际背景,所以解题时应考虑其实际意义;

②象例3、例4中的函数,称为分段函数.

③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

 0  445916  445924  445930  445934  445940  445942  445946  445952  445954  445960  445966  445970  445972  445976  445982  445984  445990  445994  445996  446000  446002  446006  446008  446010  446011  446012  446014  446015  446016  446018  446020  446024  446026  446030  446032  446036  446042  446044  446050  446054  446056  446060  446066  446072  446074  446080  446084  446086  446092  446096  446102  446110  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网