20.
(本题满分14分)本题共有2个小题,
第1小题满分6分,第2小题满分8分.
为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖7节车厢,则每日能来回10趟.火车每日每次拖挂车厢的节数是相同的,每日来回趟数y是每次拖挂车厢节数x的一次函数,每节车厢满载时能载客110人.
(1)
求出y关于x的函数关系式;
(2) 这列火车满载时每次应拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数.
21.(本满分16分)本题共有3个小题,
第1、3小题满分各5分,第2小题满分6分.
如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列
是公方差为
的等方差数列,求
和
的关系式;
(2)若数列
既是等方差数列,又是等差数列,证明该数列为常数列;
(3) 设数列
是首项为
,公方差为
的等方差数列,若将
这种顺
序的排列作为某种密码,求这种密码的个数.


22.(本题满分18分)本题共有3个小题,
第1小题满分5分,第2小题满分6分,
第3小题满分7分.
已知函数
,当点
在
的图像上移动时,
点
在函数
的图像上移动.
(1) 若点P坐标为(
),点Q也在
的图像上,求
的值;
(2) 求函数
的解析式;
(3) 当
时,试探求一个函数
使得
在限定定义域为
时有最小值而没有最大值.