9.已知f (x)=x+1,g (x)=2x+1,数列{an}满足:a1=1,an+1=则数列{an}的前2007项的和为A.5×22008-2008 B.3×22007-5020 C.6×22006-5020 D.6×21003-5020
[解析]∵a2n+2=a2n+1+1=(2a2n+1)+1=2a2n+2,∴a2n+2+2==2(a2n+2),
∴数列{a2n+2}是以2为公比、以a2=a1+1=2为首项的等比数列.
∴a2n+2=2×2
n-1,∴a2n=2 n-2.
又a2n+a2n+1= a2n+2a2n+1=3a2n+1,∴数列{an}的前2007项的和为
a1+( a2+ a3)+ ( a4+ a5)+ ( a6+ a7)+ …+ ( a2006+ a2007)
= a1+(3a2+1)+
(3a4+1)+ (3a6+1)+ …+
(3a2006+1)
= 1+(3×2-5)+ (3×22-5)+ (3×23-5)+ …+ (3×21003-5)
= 1+(3×2-5)+ (3×22-5)+ (3×23-5)+ …+ (3×21003-5)
= 3×(2+22+23+…+21003+1-5×1003
=6×(21003-1)+1-5×1003=6×21003- 5020 ,故选D.