ÌâÄ¿ÄÚÈÝ
10£®ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖеĵÚÒ»ÏóÏÞÄÚ´æÔڴŸÐӦǿ¶È´óСΪB¡¢·½Ïò´¹Ö±ÓÚ×ø±êƽÃæÏòÀïµÄÔ²ÐÎÔÈÇ¿´Å³¡ÇøÓò£¨Í¼ÖÐδ»³ö£©£»ÔÚµÚ¶þÏóÏÞÄÚ´æÔÚÑØxÖḺ·½ÏòµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶È´óСΪE£®Ò»Á£×ÓÔ´¹Ì¶¨ÔÚxÖáÉϵÄA£¨-L£¬0£©µã£¬ÑØyÖáÕý·½ÏòÊͷŵç×Ó£¬µç×Ó¾µç³¡Æ«×ªºóÄÜͨ¹ýyÖáÉϵÄC£¨0£¬2$\sqrt{3}$L£©µã£¬ÔÙ¾¹ý´Å³¡Æ«×ªºóÇ¡ºÃ´¹Ö±»÷ÖÐON£¬ONÓëxÖáÕý·½Ïò³É30¡ã½Ç£®ÒÑÖªµç×ÓµÄÖÊÁ¿Îªm£¬µçºÉÁ¿Îªe£¬²»¿¼ÂÇÁ£×ÓµÄÖØÁ¦ºÍÁ£×ÓÖ®¼äµÄÏ໥×÷Óã¬Ç󣺣¨1£©µç×ÓµÄÊÍ·ÅËÙ¶ÈvµÄ´óС£»
£¨2£©µç×ÓÀ뿪µç³¡Ê±µÄËٶȷ½ÏòÓëyÖáÕý·½ÏòµÄ¼Ð½Ç¦È£»
£¨3£©Ô²Ðδų¡µÄ×îС°ë¾¶Rmin£®
·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàËÆƽÅ×Ô˶¯£¬x·½ÏòÔÈËÙ£¬y·½ÏòÔȼÓËÙ£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â£»
£¨2£©Ïȸù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â³öx¡¢y·½ÏòµÄ·ÖËٶȣ¬È»ºó¸ù¾Ý¼¸ºÎ¹ØϵÁÐʽÇó½â£»Ò²¿ÉÒÔ¸ù¾ÝÀàËÆƽÅ×Ô˶¯ËÙ¶Èƫת½ÇµÄÕýÇÐÊÇλÒÆƫת½ÇÕýÇеÄ2±¶Ö±½ÓÇó½â£»
£¨3£©Ïȸù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó½â³ö¹ì¼£µÄ°ë¾¶£¬È»ºó»³ö¹ì¼£Í¼£¬È·¶¨´Å³¡µÄ×îС°ë¾¶£®
½â´ð ½â£º£¨1£©Á£×ÓÔÚ´¹Ö±µç³¡·½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚÑص糡·½ÏòÉÏ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬
ÓУº$2\sqrt{3}L=vt$£¬
L=$\frac{1}{2}a{t}^{2}=\frac{1}{2}\frac{eE}{m}{t}^{2}$£¬
ÁªÁ¢Á½Ê½½âµÃv=$\frac{2\sqrt{3}L}{\sqrt{\frac{2mL}{eE}}}$£®
£¨2£©Éèµç×Óµ½´ïCµãµÄËٶȴóСΪvc£¬·½ÏòÓëyÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È£®
¸ù¾ÝÀàƽÅ×Ô˶¯µÄ¹æÂÉÓУº$vt=2\sqrt{3}L$£¬$\frac{{v}_{x}}{2}t=L$£¬
tan¦È=$\frac{{v}_{x}}{v}=\frac{2}{2\sqrt{3}}=\frac{\sqrt{3}}{3}$£¬½âµÃ¦È=30¡ã£®
${v}_{C}=\frac{v}{cos30¡ã}=\frac{2\sqrt{2EeLm}}{m}$£®
£¨3£©Á£×ӵĹ켣ÈçͼËùʾ£¬¸ù¾Ý¼¸ºÎ¹Øϵ֪£¬¡ÏQO1P=120¡ã£¬
¸ù¾Ý$R=\frac{m{v}_{C}}{qB}$µÃ£¬R=$\frac{2\sqrt{2EemL}}{Be}$£®
¸ù¾Ý¼¸ºÎ¹Øϵ֪£¬´Å³¡ÇøÓòµÄ×îС°ë¾¶Rmin=$Rcos30¡ã=\frac{2\sqrt{2EemL}}{Be}¡Á\frac{\sqrt{3}}{2}$=$\frac{\sqrt{6meEL}}{eB}$£®
´ð£º£¨1£©µç×ÓµÄÊÍ·ÅËÙ¶ÈvµÄ´óСΪ$\frac{2\sqrt{3}L}{\sqrt{\frac{2mL}{eE}}}$£»
£¨2£©µç×ÓÀ뿪µç³¡Ê±µÄËٶȷ½ÏòÓëyÖáÕý·½ÏòµÄ¼Ð½Ç¦ÈΪ30¶È£»
£¨3£©Ô²Ðδų¡µÄ×îС°ë¾¶Îª$\frac{\sqrt{6meEL}}{eB}$£®
µãÆÀ ±¾ÌâÖÐÁ£×ÓÏÈÔڵ糡ÖÐ×öÀàËÆƽÅ×Ô˶¯£¬È»ºó½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬Òª×¢ÒâÁ½¸ö¹ì¼£µÄÁ¬½Óµã£¬È»ºó¸ù¾ÝÔ˶¯Ñ§¹«Ê½ºÍÅ£¶ÙµÚ¶þ¶¨ÂÉÒÔ¼°¼¸ºÎ¹ØϵÁÐʽÇó½â£¬ÆäÖл³ö¹ì¼£Êǹؼü£®
A£® | ´¬¶ÉºÓµÄ×î¶Ìʱ¼ä25s | |
B£® | ´¬Ô˶¯µÄ¹ì¼£ÊÇÒ»ÌõÖ±Ïß | |
C£® | ´¬ÔÚºÓË®ÖеÄ×î´óËÙ¶ÈÊÇ5m/s | |
D£® | Èô´¬ÒÔ×î¶Ìʱ¼ä¶ÉºÓ£¬Ôò´¬µ½´ïºÓ°¶ÏÂÓÎ40m´¦ |
A£® | ´ÓÊ©¼ÓÁ¦F¿ªÊ¼£¬Ë®Æ½µØÃæÊܵ½µÄĦ²ÁÁ¦Öð½¥Ôö´ó | |
B£® | ´ÓÊ©¼ÓÁ¦F¿ªÊ¼£¬Ë®Æ½µØÃæÊܵ½µÄĦ²ÁÁ¦ÏÈÔö´óºó²»±ä | |
C£® | ´ÓÊ©¼ÓÁ¦F¿ªÊ¼£¬Ë®Æ½µØÃæÊܵ½MµÄѹÁ¦Öð½¥¼õС | |
D£® | ´ÓÊ©¼ÓÁ¦F¿ªÊ¼£¬Ë®Æ½µØÃæÊܵ½MµÄѹÁ¦Ò»Ö±²»±ä |
A£® | AºÍB·ÖÀëºóA²»Äܻص½³ö·¢µã | B£® | AºÍB·ÖÀëʱBµÄËÙ¶ÈΪ5m/s | ||
C£® | B×îÖÕÍ£ÁôµÄλÖþàбÃæÄ©¶Ë1m | D£® | B×îÖÕÍ£ÁôµÄλÖþàбÃæÄ©¶Ë4m |
A£® | ¸Ã´øµçÁ£×Ó½øÈë´Å³¡ºó½«ÏòÏÂƫת | |
B£® | ¸Ã´øµçÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª2d | |
C£® | ¸Ã´øµçÁ£×Ó´òÔÚPQÉϵĵãÓëA¡äµãµÄ¾àÀëΪ$\sqrt{3}$d | |
D£® | ¸Ã´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪ$\frac{¦Ðd}{3{v}_{0}}$ |
A£® | ÈôL=d£¬ÔòÏßȦ´©¹ý´Å³¡µÄÕû¸ö¹ý³ÌÓÃʱΪ$\sqrt{\frac{2}{gh}d}$ | |
B£® | ÔÚÏßȦ´©¹ý´Å³¡µÄÕû¸ö¹ý³ÌÖУ¬¿Ë·þ°²ÅàÁ¦×ö¹¦Îªmgd | |
C£® | ÈôL£¼dÔòÏßȦ´©¹ý´Å³¡µÄÕû¸ö¹ý³ÌÖÐ×îСËٶȿÉÄÜ$\frac{mgR}{{{B^2}{L^2}}}$ | |
D£® | ÈôL£¼d£¬ÔòÏßȦ´©¹ý´Å³¡µÄÕû¸ö¹ý³ÌÖÐ×îСËٶȿÉÄÜ$\sqrt{2g£¨h+L-d£©}$ |