ÌâÄ¿ÄÚÈÝ
12£®Í¼ÖÐEΪµçÔ´£¬µç¶¯ÊÆE=330V£¬ÄÚ×è²»¼Æ£®µç×èR1=20k¦¸£¬R2=200k¦¸£®Æ½ÐаåµçÈÝÆ÷°å³¤l=18cm£¬Á½°å¼ä¾àd=18cm£®Ò»´ø¸ºµçµÄÁ£×ÓµçÁ¿q=8¡Á10-15C£¬ÖÊÁ¿m=8¡Á10-25kg£¬´ÓO1µãÑØÁ½°åÖÐÐÄÏßO1O2·ÉÈëÁ½°å¼ä£¬³õËÙ¶Èv0=3¡Á106m/s£®½çÃæAB¡¢CD¼äÎ޵糡£¬½çÃæCDÓÒ²àÓÐÒ»¹Ì¶¨ÔÚÖÐÐÄÏßÉÏO2µãµÄµãµçºÉM£®Á£×ÓÔÚ½çÃæCDÓÒ²àÔ˶¯¹ý³ÌÖж¯Äܱ£³Ö²»±ä£®ÒÑÖªÁ½½çÃæAB¡¢CDÏà¾àΪS=27cm£®Éè½çÃæCDÓÒ²àµãµçºÉµÄµç³¡·Ö²¼²»ÊܽçÃæµÄÓ°Ï죬²»¼ÆÁ£×ÓµÄÖØÁ¦£®ÒÑÖª¾²µçÁ¦³£ÊýΪK£¬Ç󣺣¨1£©Æ½ÐаåµçÈÝÆ÷Á½¼«°å¼äµÄµçѹU
£¨2£©Á£×Ó´©¹ý½çÃæCDʱƫÀëÖÐÐÄÏßO1O2µÄ¾àÀëL
£¨3£©µãµçºÉµÄµçÁ¿Q£®
·ÖÎö £¨1£©ÓÉ´®²¢Áªµç·µÄ¹æÂÉ¿ÉÇóµÃƽÐаåµçÈÝÆ÷Á½¶ËµÄµçѹֵ£»
£¨2£©Á£×ÓÔÚƽÐаåµçÈÝÆ÷ÄÚ×öÀàƽÅ×Ô˶¯£¬ÓÉÔ˶¯µÄºÏ³ÉÓë·Ö½â¿ÉÇóµÃÊúÖ±·½ÏòƫתµÄλÒƺÍËٶȣ»ÔÙ¶ÔƽÐаåÍâµÄ¹ý³ÌµÄÔÈËÙÖ±ÏßÔ˶¯½øÐзÖÎö£¬¿ÉÇóµÃÆ«ÀëÖÐÐĵľàÀ룻
£¨3£©ÒªÊ¹Á£×Ó¶¯Äܲ»±ä£¬Á£×ÓÖ»ÄÜ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Óɼ¸ºÎ¹ØϵÇóµÃת¶¯°ë¾¶£¬ÔÙÓÉ¿âÂØÁ¦³äµ±ÏòÐÄÁ¦£»Ôò¿ÉÇóµÃµçÁ¿£®
½â´ð ½â£º£¨1£©Æ½ÐаåµçÈÝÆ÷ÓëR2²¢Áª£¬ÔòÆäµçѹֵµÈÓÚR2Á½¶ËµÄµçѹ£»
U=$\frac{E}{{R}_{1}+{R}_{2}}{R}_{2}$=$\frac{330}{20+200}¡Á200$=300V£»
£¨2£©Á£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬ÓÉÔ˶¯µÄºÏ³ÉºÍ·Ö½â¿ÉÖª£º
ˮƽ·½Ïòl=v0t£»
ÊúÖ±·½Ïò£º¼ÓËÙ¶Èa=$\frac{Eq}{m}$=$\frac{Uq}{md}$
y=$\frac{1}{2}$$\frac{Uq}{md}$t2
ÁªÁ¢½âµÃ£ºy=$\frac{Uq{l}^{2}}{2md{v}_{0}^{2}}$=$\frac{300¡Á8¡Á1{0}^{-15}¡Á0.1{8}^{2}}{2¡Á8¡Á1{0}^{-25}¡Á9¡Á1{0}^{12}}$¡Á$\frac{1}{0.18}$=0.03m=3cm£»
ÊúÖ±·½ÏòµÄ·ÖËÙ¶ÈΪ£ºvy=at=$\frac{Uql}{md{v}_{0}}$=$\frac{300¡Á8¡Á1{0}^{-15}¡Á0.18}{8¡Á1{0}^{-25}¡Á0.18¡Á3¡Á1{0}^{6}}$=1¡Á106m/s£»
Á£×Ó´ÓABµ½´ïCDµÄʱ¼äΪ£ºt1=$\frac{0.27}{3¡Á1{0}^{6}}$=9¡Á10-8s£»
ÔòÁ£×Ó´ïµ½CDʱÊúÖ±·½ÏòÆ«ÐùµÄλÒÆΪ£ºy=0.03+vyt1=3+1¡Á106¡Á9¡Á10-8=0.12m=12cm£»
£¨3£©ÒªÊ¹Á£×Ó½øÈëCDÓÒ²àºó¶¯Äܲ»±ä£¬ÔòÁ£×ÓÒ»¶¨ÈÆO2µã×öÔ²ÖÜÔ˶¯£»Óɼ¸ºÎ¹Øϵ¿ÉÖª£»Æäת»¯°ë¾¶Îª£ºr=0.4m£»
ת¶¯µÄËÙ¶ÈΪ£ºv=$\sqrt{£¨1¡Á1{0}^{6}£©^{2}+£¨3¡Á1{0}^{6}£©^{2}}$=$\sqrt{10}$¡Á106m/s£»
ÔòÓÉ¿âÂØÁ¦µÈÓÚÏòÐÄÁ¦¿ÉÖª£º
$\frac{KQq}{{r}^{2}}=m\frac{{v}^{2}}{r}$
½âµÃ£ºQ=$\frac{vr}{kq}$=$\frac{\sqrt{10}¡Á1{0}^{6}¡Á0.4}{9¡Á1{0}^{9}¡Á8¡Á1{0}^{-15}}$=1.75¡Á1010C£»
´ð£º£¨1£©Æ½ÐаåµçÈÝÆ÷Á½¼«°å¼äµÄµçѹUΪ300V£»
£¨2£©Á£×Ó´©¹ý½çÃæCDʱƫÀëÖÐÐÄÏßO1O2µÄ¾àÀëLΪ12cm£®
£¨3£©µãµçºÉµÄµçÁ¿QΪ1.75¡Á1010C£»
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬Òª×¢ÒâÃ÷È·Á£×ÓÔÚƽÐаå¼ä×öƽÅ×Ô˶¯£¬À뿪°åºó×öÖ±ÏßÔ˶¯£¬ÈÔ¿ÉÒÔ·Ö½âΪˮƽºÍÊúÖ±Á½¸ö·½Ïò½øÐзÖÎöÇó½âƫתλÒÆ£®
A£® | ÎïÌåËùÊܵĺÏÍâÁ¦×ö¹¦Îªmgh+$\frac{1}{2}$mv2 | |
B£® | ÎïÌåËùÊܵĺÏÍâÁ¦×ö¹¦Îª$\frac{1}{2}$mv2 | |
C£® | È˶ÔÎïÌå×öµÄ¹¦Îªmgh | |
D£® | È˶ÔÎïÌå×öµÄ¹¦µÈÓÚmgh |
A£® | ´ÓQµã·É³öµÄÀë×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä× | |
B£® | ÑØPQ·½ÏòÉäÈëµÄÀë×ӷɳöʱƫת½Ç×î´ó | |
C£® | ËùÓÐÀë×ӷɳö´Å³¡Ê±µÄ¶¯ÄÜÒ»¶¨ÏàµÈ | |
D£® | Ôڴų¡ÖÐÔ˶¯Ê±¼ä×µÄÀë×Ó²»¿ÉÄܾ¹ýÔ²ÐÄOµã |
A£® | Á£×ÓÔڴų¡ÖÐÔ˶¯×ʱ¼äΪ$\frac{¦Ðm}{3qB}$ | |
B£® | ÒÔ¦È=60¡ã·ÉÈëµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä×î¶Ì | |
C£® | ÒԦȣ¼30¡ã·ÉÈëµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä¶¼ÏàµÈ | |
D£® | ÔÚAC±ß½çÉÏÖ»ÓÐÒ»°ëÇøÓòÓÐÁ£×ÓÉä³ö |
A£® | Èç¹ûÁ£×ÓûÓо¹ýÔ²ÐÎÇøÓòµ½´ïÁËQµã£¬ÔòÁ£×ÓµÄÈëÉäËÙ¶ÈΪv=$\frac{3qBL}{m}$ | |
B£® | Èç¹ûÁ£×ÓûÓо¹ýÔ²ÐÎÇøÓòµ½´ïÁËQµã£¬ÔòÁ£×ÓµÄÈëÉäËÙ¶ÈΪv=$\frac{3qBL}{2m}$ | |
C£® | Á£×ÓµÚÒ»´Î´ÓPµã¾¹ýÁËxÖᣬÔòÁ£×ÓµÄ×îСÈëÉäËÙ¶ÈΪvmin=$\frac{\sqrt{3}qBL}{m}$ | |
D£® | Á£×ÓµÚÒ»´Î´ÓPµã¾¹ýÁËxÖᣬÔòÁ£×ÓµÄ×îСÈëÉäËÙ¶ÈΪvmin=$\frac{2qBL}{m}$ |