【题目】已知定点,动点在轴上运动,过点作直线交轴于点,延长至点,使.点的轨迹是曲线.
(1)求曲线的方程;
(2)若,是曲线上的两个动点,满足,证明:直线过定点;
(3)若直线与曲线交于,两点,且,,求直线的斜率的取值范围.
【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点的“限定函数”.以下函数:①,②,③,④,其中是原点的“限定函数”的序号是______.已知点在函数的图象上,若函数是点的“限定函数”,则的取值范围是______.
【题目】设和是双曲线上的两点,线段的中点为,直线不经过坐标原点.
(1)若直线和直线的斜率都存在且分别为和,求证:;
(2)若双曲线的焦点分别为、,点的坐标为,直线的斜率为,求由四点、、、所围成四边形的面积.
【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.
(1)求的值;
(2)设为坐标原点,过椭圆上的两点、分别作该椭圆的两条切线、,且与交于点。当变化时,求面积的最大值;
(3)在(2)的条件下,经过点作直线与该椭圆交于、两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.
【题目】已知椭圆 : ( )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .
(1)求椭圆 的方程;
(2)过点 的直线 交椭圆于 , 两个不同的点,且 ,求 的取值范围.
【题目】已知数列{an}满足:,且an+1(n=1,2…)集合M={an|}中的最小元素记为m.
(1)若a1=20,写出m和a10的值:
(2)若m为偶数,证明:集合M的所有元素都是偶数;
(3)证明:当且仅当时,集合M是有限集.
【题目】已知A,B,C是抛物线W:y2=4x上的三个点,D是x轴上一点.
(1)当点B是W的顶点,且四边形ABCD为正方形时,求此正方形的面积;
(2)当点B不是W的顶点时,判断四边形ABCD是否可能为正方形,并说明理由.
【题目】已知函数f(x)=lnx﹣x+1.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程:
(2)若非零实数a使得f(x)axax2对x∈[1,+∞)恒成立,求a的取值范围.
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3,CD=DD1=5,∠D1DC=120°,M,N分别是线段AD1,BD的中点.
(1)求证:MN//平面DCC1D1;
(2)求证:MN⊥平面ADC1;
(3)求三棱锥D1﹣ADC1的体积.