【题目】全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某部门在该市2013-2018年发布的全民健身指数中,对其中的“运动参与评分值”(满分100分)进行了统计,制成如图所示的散点图.
(1)根据散点图,建立关于的回归方程;
(2)从该市的市民中随机抽取了容量为150的样本,其中经常参加体育锻炼的人数为50,以频率为概率,若从这150名市民中随机抽取4人,记其中“经常参加体育锻炼”的人数为,求的分布列和数学期望.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为,.
【题目】如图,在以为顶点的五面体中,面为正方形,,,且二面角与二面角都是.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
【题目】长方形中,,是中点(图1).将沿折起,使得(图2)在图2中:
(1)求证:平面平面;
(2)在线段上是否存点,使得二面角的余弦值为,说明理由.
【题目】已知的定义域为,,使得不等式成立,关于的不等式的解集记为.
(1)若为真,求实数的取值集合;
(2)在(1)的条件下,若是的充分不必要条件,求实数的取值范围.
【题目】下列说法正确的是( )
A.若为真命题,则,均为假命题;
B.命题“若,则”的逆否命题为真命题;
C.等比数列的前项和为,若“”则“”的否命题为真命题;
D.“平面向量与的夹角为钝角”的充要条件是“”
【题目】已知函数.
(1)当时,求的单调区间;
(2)当,,且,关于的方程有唯一实数解,求实数的值.
【题目】已知椭圆的左、右焦点分别为、,且两焦点的距离为,椭圆上一点与两焦点构成的三角形的周长为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于、两点,若,求直线的方程.
【题目】连接正方体每个面的中心构成一个正八面体,则该八面体的外接球与内切球体积之比为______.
【题目】抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线,如图一平行于轴的光线射向抛物线,经两次反射后沿平行轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.
【题目】某班级期末考试后,对数学成绩在分以上(含分)的学生成绩进行统计,其频率分布直方图如图所示.其中分数段的人数为人.
(1)根据频率分布直方图,写出该班级学生数学成绩的众数;
(2)现根据学生数学成绩从第一组和第四组(从低分段到高分段依次为第一组,第二组,,第五组)中任意选出两人形成学习小组.若选出的两人成绩之差大于分则称这两人为“最佳组合”,试求选出的两人为“最佳组合”的概率.