【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.
(Ⅰ)求的普通方程;
(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,直线与交于,两点,交轴于点,求的值.
【题目】已知函数.
(Ⅰ)若点在函数的图象上运动,直线与函数的图象不相交,求点到直线距离的最小值;
(Ⅱ)若当时,恒成立,求实数的取值范围.
【题目】已知一袋中有标有号码1、2、3、4的卡片各一张,每次从中取出一张,记下号码后放回,当四种号码的卡片全部取出时即停止,则恰好取6次卡片时停止的概率为______.
【题目】已知椭圆的离心率为,短轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理由.
【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色、相邻区域颜色不同,则区域不同涂色的方法种数为( )
A.360B.400C.420D.480
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
【题目】袋子中有四个小球,分别写有“海”“中”“加”“油”四个字,有放回地从中任取一个小球,取到“加”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1、2、3、4表示取出小球上分别写有“海”“中”“加”“油”四个字,以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止概率为( )
A.B.C.D.
【题目】如图所示,在四棱锥中,平面,,,AP=AD=2AB=2BC,点在棱上.
(Ⅰ)求证:;
(Ⅱ)当平面时,求直线与平面所成角的正弦值.
【题目】下列命题:
①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.
其中正确命题的个数是( )
A. 1 B. 2 C. 3 D. 4
【题目】给定整数(),设集合,记集合.
(1)若,求集合;
(2)若构成以为首项,()为公差的等差数列,求证:集合中的元素个数为;
(3)若构成以为首项,为公比的等比数列,求集合中元素的个数及所有元素之和.